Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain

During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2009-10, Vol.30 (10), p.3127-3141
Hauptverfasser: van den Heuvel, Martijn P., Mandl, René C.W., Kahn, René S., Hulshoff Pol, Hilleke E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3141
container_issue 10
container_start_page 3127
container_title Human brain mapping
container_volume 30
creator van den Heuvel, Martijn P.
Mandl, René C.W.
Kahn, René S.
Hulshoff Pol, Hilleke E.
description During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting‐state functional magnetic resonance imaging time‐series with diffusion tensor imaging scans. Nine consistently found functionally linked resting‐state networks were retrieved from the resting‐state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting‐state networks. Our results show that well‐known anatomical white matter tracts interconnect at least eight of the nine commonly found resting‐state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal‐frontal networks. Our results suggest that the functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/hbm.20737
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734053239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5487-866084a75448137c25d9f2268b37d0723b3e006870ecc4a3365abc218f72a5b53</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSMEog9Y8AeQN6hikdaPOHY2SFAxLagUaQDBznIcpzHj2K3ttM2_x9MZBliw8pXvd8-5uqcoXiB4jCDEJ0M7HmPICHtU7CPYsBKihjxe1zUtm4qhveIgxp8QIkQhelrsoQYTyjneL-bF5FQy3klrZ2CNW-kOBB2TcVdlTDJp4HS682EV83dvtUogDRpMrtPBzpkCMYVJpSlIC5R3LhPm1qQZyKAGk_S6pYHvH8aGaZQOtEEa96x40ksb9fPte1h8W7z_enpeXnw--3D69qJUtOKs5HUNeSUZrSqOCFOYdk2Pcc1bwjrIMGmJhrDmDGqlKklITWWrMOI9w5K2lBwWbza611M76k5pl_Kq4jqYUYZZeGnEvx1nBnHlb8Vas4E4CxxtBYK_mfJpxGii0tZKp_0UBSMVpASTJpOvN6QKPsZ8rp0LgmKdlMhJiYekMvvy77X-kNtoMvBqC8iopO2DdMrEHYdRw2lV15k72XB3xur5_47i_N2n39blZsLEpO93EzKsRJ37VHy_PBPL5cfFj8slFV_IL0gpvO0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734053239</pqid></control><display><type>article</type><title>Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>van den Heuvel, Martijn P. ; Mandl, René C.W. ; Kahn, René S. ; Hulshoff Pol, Hilleke E.</creator><creatorcontrib>van den Heuvel, Martijn P. ; Mandl, René C.W. ; Kahn, René S. ; Hulshoff Pol, Hilleke E.</creatorcontrib><description>During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting‐state functional magnetic resonance imaging time‐series with diffusion tensor imaging scans. Nine consistently found functionally linked resting‐state networks were retrieved from the resting‐state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting‐state networks. Our results show that well‐known anatomical white matter tracts interconnect at least eight of the nine commonly found resting‐state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal‐frontal networks. Our results suggest that the functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.20737</identifier><identifier>PMID: 19235882</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adolescent ; Adult ; anatomical connectivity ; Biological and medical sciences ; Brain - blood supply ; Brain - physiology ; Brain Mapping ; connectivity ; Diffusion Magnetic Resonance Imaging - methods ; diffusion tensor imaging ; DTI ; Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation ; Female ; fMRI ; functional connectivity ; Fundamental and applied biological sciences. Psychology ; Humans ; Image Processing, Computer-Assisted - methods ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging - methods ; Male ; Medical sciences ; Models, Neurological ; Nerve Fibers, Myelinated - physiology ; Nerve Net - blood supply ; Nerve Net - physiology ; Nervous system ; Neural Pathways - blood supply ; Neural Pathways - physiology ; Oxygen - blood ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Rest - physiology ; resting-state connectivity ; resting-state fMRI ; Vertebrates: nervous system and sense organs ; white matter ; Young Adult</subject><ispartof>Human brain mapping, 2009-10, Vol.30 (10), p.3127-3141</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5487-866084a75448137c25d9f2268b37d0723b3e006870ecc4a3365abc218f72a5b53</citedby><cites>FETCH-LOGICAL-c5487-866084a75448137c25d9f2268b37d0723b3e006870ecc4a3365abc218f72a5b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6870902/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6870902/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,27929,27930,45579,45580,53796,53798</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21985466$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19235882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van den Heuvel, Martijn P.</creatorcontrib><creatorcontrib>Mandl, René C.W.</creatorcontrib><creatorcontrib>Kahn, René S.</creatorcontrib><creatorcontrib>Hulshoff Pol, Hilleke E.</creatorcontrib><title>Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting‐state functional magnetic resonance imaging time‐series with diffusion tensor imaging scans. Nine consistently found functionally linked resting‐state networks were retrieved from the resting‐state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting‐state networks. Our results show that well‐known anatomical white matter tracts interconnect at least eight of the nine commonly found resting‐state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal‐frontal networks. Our results suggest that the functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.</description><subject>Adolescent</subject><subject>Adult</subject><subject>anatomical connectivity</subject><subject>Biological and medical sciences</subject><subject>Brain - blood supply</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>connectivity</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>diffusion tensor imaging</subject><subject>DTI</subject><subject>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</subject><subject>Female</subject><subject>fMRI</subject><subject>functional connectivity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Models, Neurological</subject><subject>Nerve Fibers, Myelinated - physiology</subject><subject>Nerve Net - blood supply</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Neural Pathways - blood supply</subject><subject>Neural Pathways - physiology</subject><subject>Oxygen - blood</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Rest - physiology</subject><subject>resting-state connectivity</subject><subject>resting-state fMRI</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>white matter</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAUhSMEog9Y8AeQN6hikdaPOHY2SFAxLagUaQDBznIcpzHj2K3ttM2_x9MZBliw8pXvd8-5uqcoXiB4jCDEJ0M7HmPICHtU7CPYsBKihjxe1zUtm4qhveIgxp8QIkQhelrsoQYTyjneL-bF5FQy3klrZ2CNW-kOBB2TcVdlTDJp4HS682EV83dvtUogDRpMrtPBzpkCMYVJpSlIC5R3LhPm1qQZyKAGk_S6pYHvH8aGaZQOtEEa96x40ksb9fPte1h8W7z_enpeXnw--3D69qJUtOKs5HUNeSUZrSqOCFOYdk2Pcc1bwjrIMGmJhrDmDGqlKklITWWrMOI9w5K2lBwWbza611M76k5pl_Kq4jqYUYZZeGnEvx1nBnHlb8Vas4E4CxxtBYK_mfJpxGii0tZKp_0UBSMVpASTJpOvN6QKPsZ8rp0LgmKdlMhJiYekMvvy77X-kNtoMvBqC8iopO2DdMrEHYdRw2lV15k72XB3xur5_47i_N2n39blZsLEpO93EzKsRJ37VHy_PBPL5cfFj8slFV_IL0gpvO0</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>van den Heuvel, Martijn P.</creator><creator>Mandl, René C.W.</creator><creator>Kahn, René S.</creator><creator>Hulshoff Pol, Hilleke E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200910</creationdate><title>Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain</title><author>van den Heuvel, Martijn P. ; Mandl, René C.W. ; Kahn, René S. ; Hulshoff Pol, Hilleke E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5487-866084a75448137c25d9f2268b37d0723b3e006870ecc4a3365abc218f72a5b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>anatomical connectivity</topic><topic>Biological and medical sciences</topic><topic>Brain - blood supply</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>connectivity</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>diffusion tensor imaging</topic><topic>DTI</topic><topic>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</topic><topic>Female</topic><topic>fMRI</topic><topic>functional connectivity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Models, Neurological</topic><topic>Nerve Fibers, Myelinated - physiology</topic><topic>Nerve Net - blood supply</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Neural Pathways - blood supply</topic><topic>Neural Pathways - physiology</topic><topic>Oxygen - blood</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Rest - physiology</topic><topic>resting-state connectivity</topic><topic>resting-state fMRI</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>white matter</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van den Heuvel, Martijn P.</creatorcontrib><creatorcontrib>Mandl, René C.W.</creatorcontrib><creatorcontrib>Kahn, René S.</creatorcontrib><creatorcontrib>Hulshoff Pol, Hilleke E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van den Heuvel, Martijn P.</au><au>Mandl, René C.W.</au><au>Kahn, René S.</au><au>Hulshoff Pol, Hilleke E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2009-10</date><risdate>2009</risdate><volume>30</volume><issue>10</issue><spage>3127</spage><epage>3141</epage><pages>3127-3141</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting‐state functional magnetic resonance imaging time‐series with diffusion tensor imaging scans. Nine consistently found functionally linked resting‐state networks were retrieved from the resting‐state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting‐state networks. Our results show that well‐known anatomical white matter tracts interconnect at least eight of the nine commonly found resting‐state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal‐frontal networks. Our results suggest that the functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19235882</pmid><doi>10.1002/hbm.20737</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2009-10, Vol.30 (10), p.3127-3141
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870902
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adolescent
Adult
anatomical connectivity
Biological and medical sciences
Brain - blood supply
Brain - physiology
Brain Mapping
connectivity
Diffusion Magnetic Resonance Imaging - methods
diffusion tensor imaging
DTI
Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation
Female
fMRI
functional connectivity
Fundamental and applied biological sciences. Psychology
Humans
Image Processing, Computer-Assisted - methods
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging - methods
Male
Medical sciences
Models, Neurological
Nerve Fibers, Myelinated - physiology
Nerve Net - blood supply
Nerve Net - physiology
Nervous system
Neural Pathways - blood supply
Neural Pathways - physiology
Oxygen - blood
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Rest - physiology
resting-state connectivity
resting-state fMRI
Vertebrates: nervous system and sense organs
white matter
Young Adult
title Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T01%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionally%20linked%20resting-state%20networks%20reflect%20the%20underlying%20structural%20connectivity%20architecture%20of%20the%20human%20brain&rft.jtitle=Human%20brain%20mapping&rft.au=van%20den%20Heuvel,%20Martijn%20P.&rft.date=2009-10&rft.volume=30&rft.issue=10&rft.spage=3127&rft.epage=3141&rft.pages=3127-3141&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.20737&rft_dat=%3Cproquest_pubme%3E734053239%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734053239&rft_id=info:pmid/19235882&rfr_iscdi=true