Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain
During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2009-10, Vol.30 (10), p.3127-3141 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3141 |
---|---|
container_issue | 10 |
container_start_page | 3127 |
container_title | Human brain mapping |
container_volume | 30 |
creator | van den Heuvel, Martijn P. Mandl, René C.W. Kahn, René S. Hulshoff Pol, Hilleke E. |
description | During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting‐state functional magnetic resonance imaging time‐series with diffusion tensor imaging scans. Nine consistently found functionally linked resting‐state networks were retrieved from the resting‐state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting‐state networks. Our results show that well‐known anatomical white matter tracts interconnect at least eight of the nine commonly found resting‐state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal‐frontal networks. Our results suggest that the functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/hbm.20737 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734053239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5487-866084a75448137c25d9f2268b37d0723b3e006870ecc4a3365abc218f72a5b53</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSMEog9Y8AeQN6hikdaPOHY2SFAxLagUaQDBznIcpzHj2K3ttM2_x9MZBliw8pXvd8-5uqcoXiB4jCDEJ0M7HmPICHtU7CPYsBKihjxe1zUtm4qhveIgxp8QIkQhelrsoQYTyjneL-bF5FQy3klrZ2CNW-kOBB2TcVdlTDJp4HS682EV83dvtUogDRpMrtPBzpkCMYVJpSlIC5R3LhPm1qQZyKAGk_S6pYHvH8aGaZQOtEEa96x40ksb9fPte1h8W7z_enpeXnw--3D69qJUtOKs5HUNeSUZrSqOCFOYdk2Pcc1bwjrIMGmJhrDmDGqlKklITWWrMOI9w5K2lBwWbza611M76k5pl_Kq4jqYUYZZeGnEvx1nBnHlb8Vas4E4CxxtBYK_mfJpxGii0tZKp_0UBSMVpASTJpOvN6QKPsZ8rp0LgmKdlMhJiYekMvvy77X-kNtoMvBqC8iopO2DdMrEHYdRw2lV15k72XB3xur5_47i_N2n39blZsLEpO93EzKsRJ37VHy_PBPL5cfFj8slFV_IL0gpvO0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734053239</pqid></control><display><type>article</type><title>Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>van den Heuvel, Martijn P. ; Mandl, René C.W. ; Kahn, René S. ; Hulshoff Pol, Hilleke E.</creator><creatorcontrib>van den Heuvel, Martijn P. ; Mandl, René C.W. ; Kahn, René S. ; Hulshoff Pol, Hilleke E.</creatorcontrib><description>During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting‐state functional magnetic resonance imaging time‐series with diffusion tensor imaging scans. Nine consistently found functionally linked resting‐state networks were retrieved from the resting‐state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting‐state networks. Our results show that well‐known anatomical white matter tracts interconnect at least eight of the nine commonly found resting‐state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal‐frontal networks. Our results suggest that the functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.20737</identifier><identifier>PMID: 19235882</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adolescent ; Adult ; anatomical connectivity ; Biological and medical sciences ; Brain - blood supply ; Brain - physiology ; Brain Mapping ; connectivity ; Diffusion Magnetic Resonance Imaging - methods ; diffusion tensor imaging ; DTI ; Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation ; Female ; fMRI ; functional connectivity ; Fundamental and applied biological sciences. Psychology ; Humans ; Image Processing, Computer-Assisted - methods ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging - methods ; Male ; Medical sciences ; Models, Neurological ; Nerve Fibers, Myelinated - physiology ; Nerve Net - blood supply ; Nerve Net - physiology ; Nervous system ; Neural Pathways - blood supply ; Neural Pathways - physiology ; Oxygen - blood ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Rest - physiology ; resting-state connectivity ; resting-state fMRI ; Vertebrates: nervous system and sense organs ; white matter ; Young Adult</subject><ispartof>Human brain mapping, 2009-10, Vol.30 (10), p.3127-3141</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5487-866084a75448137c25d9f2268b37d0723b3e006870ecc4a3365abc218f72a5b53</citedby><cites>FETCH-LOGICAL-c5487-866084a75448137c25d9f2268b37d0723b3e006870ecc4a3365abc218f72a5b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6870902/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6870902/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,27929,27930,45579,45580,53796,53798</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21985466$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19235882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van den Heuvel, Martijn P.</creatorcontrib><creatorcontrib>Mandl, René C.W.</creatorcontrib><creatorcontrib>Kahn, René S.</creatorcontrib><creatorcontrib>Hulshoff Pol, Hilleke E.</creatorcontrib><title>Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting‐state functional magnetic resonance imaging time‐series with diffusion tensor imaging scans. Nine consistently found functionally linked resting‐state networks were retrieved from the resting‐state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting‐state networks. Our results show that well‐known anatomical white matter tracts interconnect at least eight of the nine commonly found resting‐state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal‐frontal networks. Our results suggest that the functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.</description><subject>Adolescent</subject><subject>Adult</subject><subject>anatomical connectivity</subject><subject>Biological and medical sciences</subject><subject>Brain - blood supply</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>connectivity</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>diffusion tensor imaging</subject><subject>DTI</subject><subject>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</subject><subject>Female</subject><subject>fMRI</subject><subject>functional connectivity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Models, Neurological</subject><subject>Nerve Fibers, Myelinated - physiology</subject><subject>Nerve Net - blood supply</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Neural Pathways - blood supply</subject><subject>Neural Pathways - physiology</subject><subject>Oxygen - blood</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Rest - physiology</subject><subject>resting-state connectivity</subject><subject>resting-state fMRI</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>white matter</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAUhSMEog9Y8AeQN6hikdaPOHY2SFAxLagUaQDBznIcpzHj2K3ttM2_x9MZBliw8pXvd8-5uqcoXiB4jCDEJ0M7HmPICHtU7CPYsBKihjxe1zUtm4qhveIgxp8QIkQhelrsoQYTyjneL-bF5FQy3klrZ2CNW-kOBB2TcVdlTDJp4HS682EV83dvtUogDRpMrtPBzpkCMYVJpSlIC5R3LhPm1qQZyKAGk_S6pYHvH8aGaZQOtEEa96x40ksb9fPte1h8W7z_enpeXnw--3D69qJUtOKs5HUNeSUZrSqOCFOYdk2Pcc1bwjrIMGmJhrDmDGqlKklITWWrMOI9w5K2lBwWbza611M76k5pl_Kq4jqYUYZZeGnEvx1nBnHlb8Vas4E4CxxtBYK_mfJpxGii0tZKp_0UBSMVpASTJpOvN6QKPsZ8rp0LgmKdlMhJiYekMvvy77X-kNtoMvBqC8iopO2DdMrEHYdRw2lV15k72XB3xur5_47i_N2n39blZsLEpO93EzKsRJ37VHy_PBPL5cfFj8slFV_IL0gpvO0</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>van den Heuvel, Martijn P.</creator><creator>Mandl, René C.W.</creator><creator>Kahn, René S.</creator><creator>Hulshoff Pol, Hilleke E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200910</creationdate><title>Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain</title><author>van den Heuvel, Martijn P. ; Mandl, René C.W. ; Kahn, René S. ; Hulshoff Pol, Hilleke E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5487-866084a75448137c25d9f2268b37d0723b3e006870ecc4a3365abc218f72a5b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>anatomical connectivity</topic><topic>Biological and medical sciences</topic><topic>Brain - blood supply</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>connectivity</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>diffusion tensor imaging</topic><topic>DTI</topic><topic>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</topic><topic>Female</topic><topic>fMRI</topic><topic>functional connectivity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Models, Neurological</topic><topic>Nerve Fibers, Myelinated - physiology</topic><topic>Nerve Net - blood supply</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Neural Pathways - blood supply</topic><topic>Neural Pathways - physiology</topic><topic>Oxygen - blood</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Rest - physiology</topic><topic>resting-state connectivity</topic><topic>resting-state fMRI</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>white matter</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van den Heuvel, Martijn P.</creatorcontrib><creatorcontrib>Mandl, René C.W.</creatorcontrib><creatorcontrib>Kahn, René S.</creatorcontrib><creatorcontrib>Hulshoff Pol, Hilleke E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van den Heuvel, Martijn P.</au><au>Mandl, René C.W.</au><au>Kahn, René S.</au><au>Hulshoff Pol, Hilleke E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2009-10</date><risdate>2009</risdate><volume>30</volume><issue>10</issue><spage>3127</spage><epage>3141</epage><pages>3127-3141</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>During rest, multiple cortical brain regions are functionally linked forming resting‐state networks. This high level of functional connectivity within resting‐state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting‐state functional magnetic resonance imaging time‐series with diffusion tensor imaging scans. Nine consistently found functionally linked resting‐state networks were retrieved from the resting‐state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting‐state networks. Our results show that well‐known anatomical white matter tracts interconnect at least eight of the nine commonly found resting‐state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal‐frontal networks. Our results suggest that the functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19235882</pmid><doi>10.1002/hbm.20737</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2009-10, Vol.30 (10), p.3127-3141 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870902 |
source | MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adolescent Adult anatomical connectivity Biological and medical sciences Brain - blood supply Brain - physiology Brain Mapping connectivity Diffusion Magnetic Resonance Imaging - methods diffusion tensor imaging DTI Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation Female fMRI functional connectivity Fundamental and applied biological sciences. Psychology Humans Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging - methods Male Medical sciences Models, Neurological Nerve Fibers, Myelinated - physiology Nerve Net - blood supply Nerve Net - physiology Nervous system Neural Pathways - blood supply Neural Pathways - physiology Oxygen - blood Radiodiagnosis. Nmr imagery. Nmr spectrometry Rest - physiology resting-state connectivity resting-state fMRI Vertebrates: nervous system and sense organs white matter Young Adult |
title | Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T01%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionally%20linked%20resting-state%20networks%20reflect%20the%20underlying%20structural%20connectivity%20architecture%20of%20the%20human%20brain&rft.jtitle=Human%20brain%20mapping&rft.au=van%20den%20Heuvel,%20Martijn%20P.&rft.date=2009-10&rft.volume=30&rft.issue=10&rft.spage=3127&rft.epage=3141&rft.pages=3127-3141&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.20737&rft_dat=%3Cproquest_pubme%3E734053239%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734053239&rft_id=info:pmid/19235882&rfr_iscdi=true |