Resting-state networks in awake five- to eight-year old children

During the first 6–7 years of life children undergo a period of major neurocognitive development. Higher‐order cognitive functions such as executive control of attention, encoding and retrieving of stored information and goal‐directed behavior are present but less developed compared to older individ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2012-05, Vol.33 (5), p.1189-1201
Hauptverfasser: de Bie, Henrica M.A., Boersma, Maria, Adriaanse, Sofie, Veltman, Dick J., Wink, Alle Meije, Roosendaal, Stefan D., Barkhof, Frederik, Stam, Cornelis J., Oostrom, Kim J., Delemarre-van de Waal, Henriette A., Sanz-Arigita, Ernesto J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1201
container_issue 5
container_start_page 1189
container_title Human brain mapping
container_volume 33
creator de Bie, Henrica M.A.
Boersma, Maria
Adriaanse, Sofie
Veltman, Dick J.
Wink, Alle Meije
Roosendaal, Stefan D.
Barkhof, Frederik
Stam, Cornelis J.
Oostrom, Kim J.
Delemarre-van de Waal, Henriette A.
Sanz-Arigita, Ernesto J.
description During the first 6–7 years of life children undergo a period of major neurocognitive development. Higher‐order cognitive functions such as executive control of attention, encoding and retrieving of stored information and goal‐directed behavior are present but less developed compared to older individuals. There is only very limited information from functional magnetic resonance imaging (fMRI) studies about the level of organization of functional networks in children in the early school period. In this study we perform continuous resting‐state functional connectivity MRI in 5‐ to 8‐year‐old children in an awake state to identify and characterize resting‐state networks (RSNs). Temporal concatenation independent component analysis (ICA) approach was applied to analyze the data. We identified 14 components consisting of regions known to be involved in visual and auditory processing, motor function, attention control, memory, and the default mode network (DMN). Most networks, in particular those supporting basic motor function and sensory related processing, had a robust functional organization similar to mature adult patterns. In contrast, the DMN and other RSNs involved in higher‐order cognitive functions had immature characteristics, revealing incomplete and fragmented patterns indicating less developed functional connectivity. We therefore conclude that the DMN and other RSNs involved in higher order cognitive functioning are detectable, yet in an immature state, at an age when these cognitive abilities are mastered. Hum Brain Mapp, 2011. © 2011 Wiley‐Liss, Inc.
doi_str_mv 10.1002/hbm.21280
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3278354271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5760-587dc26e715fc6173e90e2f058612017633b0de6ffe084a0e7f7b7755ce40a6e3</originalsourceid><addsrcrecordid>eNp1kVtvEzEQhS0EoqXwwB9AKyGEeNh2xl7buy8VENGbCggE6qPleGcTN5t1sTcN-ffdkDRcJJ5mpPnmzBkdxp4jHCIAP5qO54cceQkP2D5CpXPASjxc90rmVaFxjz1J6RoAUQI-ZnscJQdR6H329iul3neTPPW2p6yjfhniLGW-y-zSzihr_C3lWR8y8pNpn6_Ixiy0deamvq0jdU_Zo8a2iZ5t6wH7fvLh2-gsv_x8ej56d5k7qRXkstS144o0ysYp1IIqIN6ALBVyQK2EGENNqmkIysIC6UaPtZbSUQFWkThgxxvdm8V4TrWjro-2NTfRz21cmWC9-XvS-amZhFujSg0gcBB4vRWI4cdi-NrMfXLUtrajsEimqoRAJUo-kC__Ia_DInbDdwblYF0qwDX1ZkO5GFKK1Oy8IJh1LGaIxfyKZWBf_Gl-R97nMACvtoBNzrZNtJ3z6Tcntda8qAbuaMMtfUur_180Z-8_3p_ONxs-9fRzt2HjzCgttDRXn04NXJRQXvGR-SLuAJOKsTk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517356012</pqid></control><display><type>article</type><title>Resting-state networks in awake five- to eight-year old children</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>de Bie, Henrica M.A. ; Boersma, Maria ; Adriaanse, Sofie ; Veltman, Dick J. ; Wink, Alle Meije ; Roosendaal, Stefan D. ; Barkhof, Frederik ; Stam, Cornelis J. ; Oostrom, Kim J. ; Delemarre-van de Waal, Henriette A. ; Sanz-Arigita, Ernesto J.</creator><creatorcontrib>de Bie, Henrica M.A. ; Boersma, Maria ; Adriaanse, Sofie ; Veltman, Dick J. ; Wink, Alle Meije ; Roosendaal, Stefan D. ; Barkhof, Frederik ; Stam, Cornelis J. ; Oostrom, Kim J. ; Delemarre-van de Waal, Henriette A. ; Sanz-Arigita, Ernesto J.</creatorcontrib><description>During the first 6–7 years of life children undergo a period of major neurocognitive development. Higher‐order cognitive functions such as executive control of attention, encoding and retrieving of stored information and goal‐directed behavior are present but less developed compared to older individuals. There is only very limited information from functional magnetic resonance imaging (fMRI) studies about the level of organization of functional networks in children in the early school period. In this study we perform continuous resting‐state functional connectivity MRI in 5‐ to 8‐year‐old children in an awake state to identify and characterize resting‐state networks (RSNs). Temporal concatenation independent component analysis (ICA) approach was applied to analyze the data. We identified 14 components consisting of regions known to be involved in visual and auditory processing, motor function, attention control, memory, and the default mode network (DMN). Most networks, in particular those supporting basic motor function and sensory related processing, had a robust functional organization similar to mature adult patterns. In contrast, the DMN and other RSNs involved in higher‐order cognitive functions had immature characteristics, revealing incomplete and fragmented patterns indicating less developed functional connectivity. We therefore conclude that the DMN and other RSNs involved in higher order cognitive functioning are detectable, yet in an immature state, at an age when these cognitive abilities are mastered. Hum Brain Mapp, 2011. © 2011 Wiley‐Liss, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.21280</identifier><identifier>PMID: 21520347</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adult ; Age Factors ; Attention - physiology ; Biological and medical sciences ; Brain - physiology ; Brain Mapping - methods ; Child ; Child, Preschool ; children ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; development ; Female ; functional connectivity ; functional MRI ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging - methods ; Male ; Medical sciences ; Nerve Net - physiology ; Nervous system ; Neurology ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Rest - physiology ; resting state ; resting state networks ; Young Adult</subject><ispartof>Human brain mapping, 2012-05, Vol.33 (5), p.1189-1201</ispartof><rights>Copyright © 2011 Wiley‐Liss, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5760-587dc26e715fc6173e90e2f058612017633b0de6ffe084a0e7f7b7755ce40a6e3</citedby><cites>FETCH-LOGICAL-c5760-587dc26e715fc6173e90e2f058612017633b0de6ffe084a0e7f7b7755ce40a6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6870031/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6870031/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,27924,27925,45574,45575,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25777249$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21520347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Bie, Henrica M.A.</creatorcontrib><creatorcontrib>Boersma, Maria</creatorcontrib><creatorcontrib>Adriaanse, Sofie</creatorcontrib><creatorcontrib>Veltman, Dick J.</creatorcontrib><creatorcontrib>Wink, Alle Meije</creatorcontrib><creatorcontrib>Roosendaal, Stefan D.</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Stam, Cornelis J.</creatorcontrib><creatorcontrib>Oostrom, Kim J.</creatorcontrib><creatorcontrib>Delemarre-van de Waal, Henriette A.</creatorcontrib><creatorcontrib>Sanz-Arigita, Ernesto J.</creatorcontrib><title>Resting-state networks in awake five- to eight-year old children</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>During the first 6–7 years of life children undergo a period of major neurocognitive development. Higher‐order cognitive functions such as executive control of attention, encoding and retrieving of stored information and goal‐directed behavior are present but less developed compared to older individuals. There is only very limited information from functional magnetic resonance imaging (fMRI) studies about the level of organization of functional networks in children in the early school period. In this study we perform continuous resting‐state functional connectivity MRI in 5‐ to 8‐year‐old children in an awake state to identify and characterize resting‐state networks (RSNs). Temporal concatenation independent component analysis (ICA) approach was applied to analyze the data. We identified 14 components consisting of regions known to be involved in visual and auditory processing, motor function, attention control, memory, and the default mode network (DMN). Most networks, in particular those supporting basic motor function and sensory related processing, had a robust functional organization similar to mature adult patterns. In contrast, the DMN and other RSNs involved in higher‐order cognitive functions had immature characteristics, revealing incomplete and fragmented patterns indicating less developed functional connectivity. We therefore conclude that the DMN and other RSNs involved in higher order cognitive functioning are detectable, yet in an immature state, at an age when these cognitive abilities are mastered. Hum Brain Mapp, 2011. © 2011 Wiley‐Liss, Inc.</description><subject>Adult</subject><subject>Age Factors</subject><subject>Attention - physiology</subject><subject>Biological and medical sciences</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>children</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>development</subject><subject>Female</subject><subject>functional connectivity</subject><subject>functional MRI</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Neurology</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Rest - physiology</subject><subject>resting state</subject><subject>resting state networks</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kVtvEzEQhS0EoqXwwB9AKyGEeNh2xl7buy8VENGbCggE6qPleGcTN5t1sTcN-ffdkDRcJJ5mpPnmzBkdxp4jHCIAP5qO54cceQkP2D5CpXPASjxc90rmVaFxjz1J6RoAUQI-ZnscJQdR6H329iul3neTPPW2p6yjfhniLGW-y-zSzihr_C3lWR8y8pNpn6_Ixiy0deamvq0jdU_Zo8a2iZ5t6wH7fvLh2-gsv_x8ej56d5k7qRXkstS144o0ysYp1IIqIN6ALBVyQK2EGENNqmkIysIC6UaPtZbSUQFWkThgxxvdm8V4TrWjro-2NTfRz21cmWC9-XvS-amZhFujSg0gcBB4vRWI4cdi-NrMfXLUtrajsEimqoRAJUo-kC__Ia_DInbDdwblYF0qwDX1ZkO5GFKK1Oy8IJh1LGaIxfyKZWBf_Gl-R97nMACvtoBNzrZNtJ3z6Tcntda8qAbuaMMtfUur_180Z-8_3p_ONxs-9fRzt2HjzCgttDRXn04NXJRQXvGR-SLuAJOKsTk</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>de Bie, Henrica M.A.</creator><creator>Boersma, Maria</creator><creator>Adriaanse, Sofie</creator><creator>Veltman, Dick J.</creator><creator>Wink, Alle Meije</creator><creator>Roosendaal, Stefan D.</creator><creator>Barkhof, Frederik</creator><creator>Stam, Cornelis J.</creator><creator>Oostrom, Kim J.</creator><creator>Delemarre-van de Waal, Henriette A.</creator><creator>Sanz-Arigita, Ernesto J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201205</creationdate><title>Resting-state networks in awake five- to eight-year old children</title><author>de Bie, Henrica M.A. ; Boersma, Maria ; Adriaanse, Sofie ; Veltman, Dick J. ; Wink, Alle Meije ; Roosendaal, Stefan D. ; Barkhof, Frederik ; Stam, Cornelis J. ; Oostrom, Kim J. ; Delemarre-van de Waal, Henriette A. ; Sanz-Arigita, Ernesto J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5760-587dc26e715fc6173e90e2f058612017633b0de6ffe084a0e7f7b7755ce40a6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Age Factors</topic><topic>Attention - physiology</topic><topic>Biological and medical sciences</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>children</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>development</topic><topic>Female</topic><topic>functional connectivity</topic><topic>functional MRI</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Neurology</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Rest - physiology</topic><topic>resting state</topic><topic>resting state networks</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Bie, Henrica M.A.</creatorcontrib><creatorcontrib>Boersma, Maria</creatorcontrib><creatorcontrib>Adriaanse, Sofie</creatorcontrib><creatorcontrib>Veltman, Dick J.</creatorcontrib><creatorcontrib>Wink, Alle Meije</creatorcontrib><creatorcontrib>Roosendaal, Stefan D.</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Stam, Cornelis J.</creatorcontrib><creatorcontrib>Oostrom, Kim J.</creatorcontrib><creatorcontrib>Delemarre-van de Waal, Henriette A.</creatorcontrib><creatorcontrib>Sanz-Arigita, Ernesto J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Bie, Henrica M.A.</au><au>Boersma, Maria</au><au>Adriaanse, Sofie</au><au>Veltman, Dick J.</au><au>Wink, Alle Meije</au><au>Roosendaal, Stefan D.</au><au>Barkhof, Frederik</au><au>Stam, Cornelis J.</au><au>Oostrom, Kim J.</au><au>Delemarre-van de Waal, Henriette A.</au><au>Sanz-Arigita, Ernesto J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting-state networks in awake five- to eight-year old children</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2012-05</date><risdate>2012</risdate><volume>33</volume><issue>5</issue><spage>1189</spage><epage>1201</epage><pages>1189-1201</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>During the first 6–7 years of life children undergo a period of major neurocognitive development. Higher‐order cognitive functions such as executive control of attention, encoding and retrieving of stored information and goal‐directed behavior are present but less developed compared to older individuals. There is only very limited information from functional magnetic resonance imaging (fMRI) studies about the level of organization of functional networks in children in the early school period. In this study we perform continuous resting‐state functional connectivity MRI in 5‐ to 8‐year‐old children in an awake state to identify and characterize resting‐state networks (RSNs). Temporal concatenation independent component analysis (ICA) approach was applied to analyze the data. We identified 14 components consisting of regions known to be involved in visual and auditory processing, motor function, attention control, memory, and the default mode network (DMN). Most networks, in particular those supporting basic motor function and sensory related processing, had a robust functional organization similar to mature adult patterns. In contrast, the DMN and other RSNs involved in higher‐order cognitive functions had immature characteristics, revealing incomplete and fragmented patterns indicating less developed functional connectivity. We therefore conclude that the DMN and other RSNs involved in higher order cognitive functioning are detectable, yet in an immature state, at an age when these cognitive abilities are mastered. Hum Brain Mapp, 2011. © 2011 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21520347</pmid><doi>10.1002/hbm.21280</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2012-05, Vol.33 (5), p.1189-1201
issn 1065-9471
1097-0193
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870031
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adult
Age Factors
Attention - physiology
Biological and medical sciences
Brain - physiology
Brain Mapping - methods
Child
Child, Preschool
children
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
development
Female
functional connectivity
functional MRI
Humans
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging - methods
Male
Medical sciences
Nerve Net - physiology
Nervous system
Neurology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Rest - physiology
resting state
resting state networks
Young Adult
title Resting-state networks in awake five- to eight-year old children
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting-state%20networks%20in%20awake%20five-%20to%20eight-year%20old%20children&rft.jtitle=Human%20brain%20mapping&rft.au=de%20Bie,%20Henrica%20M.A.&rft.date=2012-05&rft.volume=33&rft.issue=5&rft.spage=1189&rft.epage=1201&rft.pages=1189-1201&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.21280&rft_dat=%3Cproquest_pubme%3E3278354271%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1517356012&rft_id=info:pmid/21520347&rfr_iscdi=true