Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification
Despite extensive research, psychiatry remains an essentially clinical and, therefore, subjective clinical discipline, with no objective biomarkers to guide clinical practice and research. Development of psychiatric biomarkers is consequently important. A promising approach involves the use of machi...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2014-10, Vol.35 (10), p.5179-5189 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5189 |
---|---|
container_issue | 10 |
container_start_page | 5179 |
container_title | Human brain mapping |
container_volume | 35 |
creator | Johnston, Blair A. Mwangi, Benson Matthews, Keith Coghill, David Konrad, Kerstin Steele, J. Douglas |
description | Despite extensive research, psychiatry remains an essentially clinical and, therefore, subjective clinical discipline, with no objective biomarkers to guide clinical practice and research. Development of psychiatric biomarkers is consequently important. A promising approach involves the use of machine learning with neuroimaging, to make predictions of diagnosis and treatment response for individual patients. Herein, we describe predictions of attention deficit hyperactivity disorder (ADHD) diagnosis using structural T1 weighted brain scans obtained from 34 young males with ADHD and 34 controls and a support vector machine. We report 93% accuracy of individual subject diagnostic prediction. Importantly, automated selection of brain regions supporting prediction was used. High accuracy prediction was supported by a region of reduced white matter in the brainstem, associated with a pons volumetric reduction in ADHD, adjacent to the noradrenergic locus coeruleus and dopaminergic ventral tegmental area nuclei. Medications used to treat ADHD modify dopaminergic and noradrenergic function. The white matter brainstem finding raises the possibility of “catecholamine disconnection or dysregulation” contributing to the ADHD syndrome, ameliorated by medication. Hum Brain Mapp 35:5179–5189, 2014. © 2014 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/hbm.22542 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6869620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3434135241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6102-5b09d76de5e0237cce64d13bc9c66644a45038cdabab4940d402a5bc6b73553</originalsourceid><addsrcrecordid>eNqF0k1v0zAcBvAIgdgYHPgCKBJCgkM2vye5ILEKtmkDhEDAzfrHdluPxC62M8iFz467duVFQpwcyT8_tvO4KB5idIgRIkfLbjgkhDNyq9jHqK0rhFt6e_0teNWyGu8V92K8RAhjjvDdYo-wJgtK94sfxwGsi8kMJXTOhwF6m6yJpXUlpGRcst6V2sytsqlcTisTQCV7ZdNUaht90CaUcVytfMjTdrEsQakxmykn6Oz0CH2WsHA-JqtK1UOMNsfBOvl-cWcOfTQPtuNB8f7Vyw-z0-ri7cnZ7MVFpQRGpOIdanUttOEGEVorZQTTmHaqVUIIxoBxRBuloYOOtQxphgjwTomuppzTg-L5JnU1doPRKt8qQC9XwQ4QJunByj9nnF3Khb-SohGtICgHPN0GBP91NDHJwUZl-h6c8WOUuG4QJzUT5P-UC9o2TYObTB__RS_9GFz-D2tFcm-oZVk92ygVfIzBzHfnxkiu65e5fnldf7aPfr_oTt70ncGTLYCooJ8HcMrGXy6fC-ec7I427pvtzfTvHeXp8eubravNCpsf0_fdCghfpKhpzeWnNyeymZ1__PyuPZeC_gRV39kb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562471094</pqid></control><display><type>article</type><title>Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Johnston, Blair A. ; Mwangi, Benson ; Matthews, Keith ; Coghill, David ; Konrad, Kerstin ; Steele, J. Douglas</creator><creatorcontrib>Johnston, Blair A. ; Mwangi, Benson ; Matthews, Keith ; Coghill, David ; Konrad, Kerstin ; Steele, J. Douglas</creatorcontrib><description>Despite extensive research, psychiatry remains an essentially clinical and, therefore, subjective clinical discipline, with no objective biomarkers to guide clinical practice and research. Development of psychiatric biomarkers is consequently important. A promising approach involves the use of machine learning with neuroimaging, to make predictions of diagnosis and treatment response for individual patients. Herein, we describe predictions of attention deficit hyperactivity disorder (ADHD) diagnosis using structural T1 weighted brain scans obtained from 34 young males with ADHD and 34 controls and a support vector machine. We report 93% accuracy of individual subject diagnostic prediction. Importantly, automated selection of brain regions supporting prediction was used. High accuracy prediction was supported by a region of reduced white matter in the brainstem, associated with a pons volumetric reduction in ADHD, adjacent to the noradrenergic locus coeruleus and dopaminergic ventral tegmental area nuclei. Medications used to treat ADHD modify dopaminergic and noradrenergic function. The white matter brainstem finding raises the possibility of “catecholamine disconnection or dysregulation” contributing to the ADHD syndrome, ameliorated by medication. Hum Brain Mapp 35:5179–5189, 2014. © 2014 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.22542</identifier><identifier>PMID: 24819333</identifier><language>eng</language><publisher>New York, NY: Blackwell Publishing Ltd</publisher><subject>ADHD ; Adolescent ; Attention Deficit Disorder with Hyperactivity - classification ; Attention Deficit Disorder with Hyperactivity - diagnosis ; Biological and medical sciences ; Brain Mapping ; Brain Stem - pathology ; brainstem ; Child ; DARTEL ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Humans ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; machine learning ; Magnetic Resonance Imaging ; Male ; Medical sciences ; Nervous system ; Nervous system (semeiology, syndromes) ; Neurology ; Predictive Value of Tests ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Support Vector Machine ; Young Adult</subject><ispartof>Human brain mapping, 2014-10, Vol.35 (10), p.5179-5189</ispartof><rights>Copyright © 2014 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6102-5b09d76de5e0237cce64d13bc9c66644a45038cdabab4940d402a5bc6b73553</citedby><cites>FETCH-LOGICAL-c6102-5b09d76de5e0237cce64d13bc9c66644a45038cdabab4940d402a5bc6b73553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6869620/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6869620/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,27923,27924,45573,45574,53790,53792</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28811423$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24819333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnston, Blair A.</creatorcontrib><creatorcontrib>Mwangi, Benson</creatorcontrib><creatorcontrib>Matthews, Keith</creatorcontrib><creatorcontrib>Coghill, David</creatorcontrib><creatorcontrib>Konrad, Kerstin</creatorcontrib><creatorcontrib>Steele, J. Douglas</creatorcontrib><title>Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>Despite extensive research, psychiatry remains an essentially clinical and, therefore, subjective clinical discipline, with no objective biomarkers to guide clinical practice and research. Development of psychiatric biomarkers is consequently important. A promising approach involves the use of machine learning with neuroimaging, to make predictions of diagnosis and treatment response for individual patients. Herein, we describe predictions of attention deficit hyperactivity disorder (ADHD) diagnosis using structural T1 weighted brain scans obtained from 34 young males with ADHD and 34 controls and a support vector machine. We report 93% accuracy of individual subject diagnostic prediction. Importantly, automated selection of brain regions supporting prediction was used. High accuracy prediction was supported by a region of reduced white matter in the brainstem, associated with a pons volumetric reduction in ADHD, adjacent to the noradrenergic locus coeruleus and dopaminergic ventral tegmental area nuclei. Medications used to treat ADHD modify dopaminergic and noradrenergic function. The white matter brainstem finding raises the possibility of “catecholamine disconnection or dysregulation” contributing to the ADHD syndrome, ameliorated by medication. Hum Brain Mapp 35:5179–5189, 2014. © 2014 Wiley Periodicals, Inc.</description><subject>ADHD</subject><subject>Adolescent</subject><subject>Attention Deficit Disorder with Hyperactivity - classification</subject><subject>Attention Deficit Disorder with Hyperactivity - diagnosis</subject><subject>Biological and medical sciences</subject><subject>Brain Mapping</subject><subject>Brain Stem - pathology</subject><subject>brainstem</subject><subject>Child</subject><subject>DARTEL</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Nervous system</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neurology</subject><subject>Predictive Value of Tests</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Support Vector Machine</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0k1v0zAcBvAIgdgYHPgCKBJCgkM2vye5ILEKtmkDhEDAzfrHdluPxC62M8iFz467duVFQpwcyT8_tvO4KB5idIgRIkfLbjgkhDNyq9jHqK0rhFt6e_0teNWyGu8V92K8RAhjjvDdYo-wJgtK94sfxwGsi8kMJXTOhwF6m6yJpXUlpGRcst6V2sytsqlcTisTQCV7ZdNUaht90CaUcVytfMjTdrEsQakxmykn6Oz0CH2WsHA-JqtK1UOMNsfBOvl-cWcOfTQPtuNB8f7Vyw-z0-ri7cnZ7MVFpQRGpOIdanUttOEGEVorZQTTmHaqVUIIxoBxRBuloYOOtQxphgjwTomuppzTg-L5JnU1doPRKt8qQC9XwQ4QJunByj9nnF3Khb-SohGtICgHPN0GBP91NDHJwUZl-h6c8WOUuG4QJzUT5P-UC9o2TYObTB__RS_9GFz-D2tFcm-oZVk92ygVfIzBzHfnxkiu65e5fnldf7aPfr_oTt70ncGTLYCooJ8HcMrGXy6fC-ec7I427pvtzfTvHeXp8eubravNCpsf0_fdCghfpKhpzeWnNyeymZ1__PyuPZeC_gRV39kb</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Johnston, Blair A.</creator><creator>Mwangi, Benson</creator><creator>Matthews, Keith</creator><creator>Coghill, David</creator><creator>Konrad, Kerstin</creator><creator>Steele, J. Douglas</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Liss</general><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201410</creationdate><title>Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification</title><author>Johnston, Blair A. ; Mwangi, Benson ; Matthews, Keith ; Coghill, David ; Konrad, Kerstin ; Steele, J. Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6102-5b09d76de5e0237cce64d13bc9c66644a45038cdabab4940d402a5bc6b73553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ADHD</topic><topic>Adolescent</topic><topic>Attention Deficit Disorder with Hyperactivity - classification</topic><topic>Attention Deficit Disorder with Hyperactivity - diagnosis</topic><topic>Biological and medical sciences</topic><topic>Brain Mapping</topic><topic>Brain Stem - pathology</topic><topic>brainstem</topic><topic>Child</topic><topic>DARTEL</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Nervous system</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neurology</topic><topic>Predictive Value of Tests</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Support Vector Machine</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston, Blair A.</creatorcontrib><creatorcontrib>Mwangi, Benson</creatorcontrib><creatorcontrib>Matthews, Keith</creatorcontrib><creatorcontrib>Coghill, David</creatorcontrib><creatorcontrib>Konrad, Kerstin</creatorcontrib><creatorcontrib>Steele, J. Douglas</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnston, Blair A.</au><au>Mwangi, Benson</au><au>Matthews, Keith</au><au>Coghill, David</au><au>Konrad, Kerstin</au><au>Steele, J. Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2014-10</date><risdate>2014</risdate><volume>35</volume><issue>10</issue><spage>5179</spage><epage>5189</epage><pages>5179-5189</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Despite extensive research, psychiatry remains an essentially clinical and, therefore, subjective clinical discipline, with no objective biomarkers to guide clinical practice and research. Development of psychiatric biomarkers is consequently important. A promising approach involves the use of machine learning with neuroimaging, to make predictions of diagnosis and treatment response for individual patients. Herein, we describe predictions of attention deficit hyperactivity disorder (ADHD) diagnosis using structural T1 weighted brain scans obtained from 34 young males with ADHD and 34 controls and a support vector machine. We report 93% accuracy of individual subject diagnostic prediction. Importantly, automated selection of brain regions supporting prediction was used. High accuracy prediction was supported by a region of reduced white matter in the brainstem, associated with a pons volumetric reduction in ADHD, adjacent to the noradrenergic locus coeruleus and dopaminergic ventral tegmental area nuclei. Medications used to treat ADHD modify dopaminergic and noradrenergic function. The white matter brainstem finding raises the possibility of “catecholamine disconnection or dysregulation” contributing to the ADHD syndrome, ameliorated by medication. Hum Brain Mapp 35:5179–5189, 2014. © 2014 Wiley Periodicals, Inc.</abstract><cop>New York, NY</cop><pub>Blackwell Publishing Ltd</pub><pmid>24819333</pmid><doi>10.1002/hbm.22542</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2014-10, Vol.35 (10), p.5179-5189 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6869620 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central |
subjects | ADHD Adolescent Attention Deficit Disorder with Hyperactivity - classification Attention Deficit Disorder with Hyperactivity - diagnosis Biological and medical sciences Brain Mapping Brain Stem - pathology brainstem Child DARTEL Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Humans Image Processing, Computer-Assisted Investigative techniques, diagnostic techniques (general aspects) machine learning Magnetic Resonance Imaging Male Medical sciences Nervous system Nervous system (semeiology, syndromes) Neurology Predictive Value of Tests Radiodiagnosis. Nmr imagery. Nmr spectrometry Support Vector Machine Young Adult |
title | Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brainstem%20abnormalities%20in%20attention%20deficit%20hyperactivity%20disorder%20support%20high%20accuracy%20individual%20diagnostic%20classification&rft.jtitle=Human%20brain%20mapping&rft.au=Johnston,%20Blair%20A.&rft.date=2014-10&rft.volume=35&rft.issue=10&rft.spage=5179&rft.epage=5189&rft.pages=5179-5189&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.22542&rft_dat=%3Cproquest_pubme%3E3434135241%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562471094&rft_id=info:pmid/24819333&rfr_iscdi=true |