Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification

Despite extensive research, psychiatry remains an essentially clinical and, therefore, subjective clinical discipline, with no objective biomarkers to guide clinical practice and research. Development of psychiatric biomarkers is consequently important. A promising approach involves the use of machi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2014-10, Vol.35 (10), p.5179-5189
Hauptverfasser: Johnston, Blair A., Mwangi, Benson, Matthews, Keith, Coghill, David, Konrad, Kerstin, Steele, J. Douglas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5189
container_issue 10
container_start_page 5179
container_title Human brain mapping
container_volume 35
creator Johnston, Blair A.
Mwangi, Benson
Matthews, Keith
Coghill, David
Konrad, Kerstin
Steele, J. Douglas
description Despite extensive research, psychiatry remains an essentially clinical and, therefore, subjective clinical discipline, with no objective biomarkers to guide clinical practice and research. Development of psychiatric biomarkers is consequently important. A promising approach involves the use of machine learning with neuroimaging, to make predictions of diagnosis and treatment response for individual patients. Herein, we describe predictions of attention deficit hyperactivity disorder (ADHD) diagnosis using structural T1 weighted brain scans obtained from 34 young males with ADHD and 34 controls and a support vector machine. We report 93% accuracy of individual subject diagnostic prediction. Importantly, automated selection of brain regions supporting prediction was used. High accuracy prediction was supported by a region of reduced white matter in the brainstem, associated with a pons volumetric reduction in ADHD, adjacent to the noradrenergic locus coeruleus and dopaminergic ventral tegmental area nuclei. Medications used to treat ADHD modify dopaminergic and noradrenergic function. The white matter brainstem finding raises the possibility of “catecholamine disconnection or dysregulation” contributing to the ADHD syndrome, ameliorated by medication. Hum Brain Mapp 35:5179–5189, 2014. © 2014 Wiley Periodicals, Inc.
doi_str_mv 10.1002/hbm.22542
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6869620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3434135241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6102-5b09d76de5e0237cce64d13bc9c66644a45038cdabab4940d402a5bc6b73553</originalsourceid><addsrcrecordid>eNqF0k1v0zAcBvAIgdgYHPgCKBJCgkM2vye5ILEKtmkDhEDAzfrHdluPxC62M8iFz467duVFQpwcyT8_tvO4KB5idIgRIkfLbjgkhDNyq9jHqK0rhFt6e_0teNWyGu8V92K8RAhjjvDdYo-wJgtK94sfxwGsi8kMJXTOhwF6m6yJpXUlpGRcst6V2sytsqlcTisTQCV7ZdNUaht90CaUcVytfMjTdrEsQakxmykn6Oz0CH2WsHA-JqtK1UOMNsfBOvl-cWcOfTQPtuNB8f7Vyw-z0-ri7cnZ7MVFpQRGpOIdanUttOEGEVorZQTTmHaqVUIIxoBxRBuloYOOtQxphgjwTomuppzTg-L5JnU1doPRKt8qQC9XwQ4QJunByj9nnF3Khb-SohGtICgHPN0GBP91NDHJwUZl-h6c8WOUuG4QJzUT5P-UC9o2TYObTB__RS_9GFz-D2tFcm-oZVk92ygVfIzBzHfnxkiu65e5fnldf7aPfr_oTt70ncGTLYCooJ8HcMrGXy6fC-ec7I427pvtzfTvHeXp8eubravNCpsf0_fdCghfpKhpzeWnNyeymZ1__PyuPZeC_gRV39kb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562471094</pqid></control><display><type>article</type><title>Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Johnston, Blair A. ; Mwangi, Benson ; Matthews, Keith ; Coghill, David ; Konrad, Kerstin ; Steele, J. Douglas</creator><creatorcontrib>Johnston, Blair A. ; Mwangi, Benson ; Matthews, Keith ; Coghill, David ; Konrad, Kerstin ; Steele, J. Douglas</creatorcontrib><description>Despite extensive research, psychiatry remains an essentially clinical and, therefore, subjective clinical discipline, with no objective biomarkers to guide clinical practice and research. Development of psychiatric biomarkers is consequently important. A promising approach involves the use of machine learning with neuroimaging, to make predictions of diagnosis and treatment response for individual patients. Herein, we describe predictions of attention deficit hyperactivity disorder (ADHD) diagnosis using structural T1 weighted brain scans obtained from 34 young males with ADHD and 34 controls and a support vector machine. We report 93% accuracy of individual subject diagnostic prediction. Importantly, automated selection of brain regions supporting prediction was used. High accuracy prediction was supported by a region of reduced white matter in the brainstem, associated with a pons volumetric reduction in ADHD, adjacent to the noradrenergic locus coeruleus and dopaminergic ventral tegmental area nuclei. Medications used to treat ADHD modify dopaminergic and noradrenergic function. The white matter brainstem finding raises the possibility of “catecholamine disconnection or dysregulation” contributing to the ADHD syndrome, ameliorated by medication. Hum Brain Mapp 35:5179–5189, 2014. © 2014 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.22542</identifier><identifier>PMID: 24819333</identifier><language>eng</language><publisher>New York, NY: Blackwell Publishing Ltd</publisher><subject>ADHD ; Adolescent ; Attention Deficit Disorder with Hyperactivity - classification ; Attention Deficit Disorder with Hyperactivity - diagnosis ; Biological and medical sciences ; Brain Mapping ; Brain Stem - pathology ; brainstem ; Child ; DARTEL ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Humans ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; machine learning ; Magnetic Resonance Imaging ; Male ; Medical sciences ; Nervous system ; Nervous system (semeiology, syndromes) ; Neurology ; Predictive Value of Tests ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Support Vector Machine ; Young Adult</subject><ispartof>Human brain mapping, 2014-10, Vol.35 (10), p.5179-5189</ispartof><rights>Copyright © 2014 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6102-5b09d76de5e0237cce64d13bc9c66644a45038cdabab4940d402a5bc6b73553</citedby><cites>FETCH-LOGICAL-c6102-5b09d76de5e0237cce64d13bc9c66644a45038cdabab4940d402a5bc6b73553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6869620/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6869620/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,27923,27924,45573,45574,53790,53792</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28811423$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24819333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnston, Blair A.</creatorcontrib><creatorcontrib>Mwangi, Benson</creatorcontrib><creatorcontrib>Matthews, Keith</creatorcontrib><creatorcontrib>Coghill, David</creatorcontrib><creatorcontrib>Konrad, Kerstin</creatorcontrib><creatorcontrib>Steele, J. Douglas</creatorcontrib><title>Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>Despite extensive research, psychiatry remains an essentially clinical and, therefore, subjective clinical discipline, with no objective biomarkers to guide clinical practice and research. Development of psychiatric biomarkers is consequently important. A promising approach involves the use of machine learning with neuroimaging, to make predictions of diagnosis and treatment response for individual patients. Herein, we describe predictions of attention deficit hyperactivity disorder (ADHD) diagnosis using structural T1 weighted brain scans obtained from 34 young males with ADHD and 34 controls and a support vector machine. We report 93% accuracy of individual subject diagnostic prediction. Importantly, automated selection of brain regions supporting prediction was used. High accuracy prediction was supported by a region of reduced white matter in the brainstem, associated with a pons volumetric reduction in ADHD, adjacent to the noradrenergic locus coeruleus and dopaminergic ventral tegmental area nuclei. Medications used to treat ADHD modify dopaminergic and noradrenergic function. The white matter brainstem finding raises the possibility of “catecholamine disconnection or dysregulation” contributing to the ADHD syndrome, ameliorated by medication. Hum Brain Mapp 35:5179–5189, 2014. © 2014 Wiley Periodicals, Inc.</description><subject>ADHD</subject><subject>Adolescent</subject><subject>Attention Deficit Disorder with Hyperactivity - classification</subject><subject>Attention Deficit Disorder with Hyperactivity - diagnosis</subject><subject>Biological and medical sciences</subject><subject>Brain Mapping</subject><subject>Brain Stem - pathology</subject><subject>brainstem</subject><subject>Child</subject><subject>DARTEL</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Nervous system</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neurology</subject><subject>Predictive Value of Tests</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Support Vector Machine</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0k1v0zAcBvAIgdgYHPgCKBJCgkM2vye5ILEKtmkDhEDAzfrHdluPxC62M8iFz467duVFQpwcyT8_tvO4KB5idIgRIkfLbjgkhDNyq9jHqK0rhFt6e_0teNWyGu8V92K8RAhjjvDdYo-wJgtK94sfxwGsi8kMJXTOhwF6m6yJpXUlpGRcst6V2sytsqlcTisTQCV7ZdNUaht90CaUcVytfMjTdrEsQakxmykn6Oz0CH2WsHA-JqtK1UOMNsfBOvl-cWcOfTQPtuNB8f7Vyw-z0-ri7cnZ7MVFpQRGpOIdanUttOEGEVorZQTTmHaqVUIIxoBxRBuloYOOtQxphgjwTomuppzTg-L5JnU1doPRKt8qQC9XwQ4QJunByj9nnF3Khb-SohGtICgHPN0GBP91NDHJwUZl-h6c8WOUuG4QJzUT5P-UC9o2TYObTB__RS_9GFz-D2tFcm-oZVk92ygVfIzBzHfnxkiu65e5fnldf7aPfr_oTt70ncGTLYCooJ8HcMrGXy6fC-ec7I427pvtzfTvHeXp8eubravNCpsf0_fdCghfpKhpzeWnNyeymZ1__PyuPZeC_gRV39kb</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Johnston, Blair A.</creator><creator>Mwangi, Benson</creator><creator>Matthews, Keith</creator><creator>Coghill, David</creator><creator>Konrad, Kerstin</creator><creator>Steele, J. Douglas</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Liss</general><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201410</creationdate><title>Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification</title><author>Johnston, Blair A. ; Mwangi, Benson ; Matthews, Keith ; Coghill, David ; Konrad, Kerstin ; Steele, J. Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6102-5b09d76de5e0237cce64d13bc9c66644a45038cdabab4940d402a5bc6b73553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ADHD</topic><topic>Adolescent</topic><topic>Attention Deficit Disorder with Hyperactivity - classification</topic><topic>Attention Deficit Disorder with Hyperactivity - diagnosis</topic><topic>Biological and medical sciences</topic><topic>Brain Mapping</topic><topic>Brain Stem - pathology</topic><topic>brainstem</topic><topic>Child</topic><topic>DARTEL</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Nervous system</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neurology</topic><topic>Predictive Value of Tests</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Support Vector Machine</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston, Blair A.</creatorcontrib><creatorcontrib>Mwangi, Benson</creatorcontrib><creatorcontrib>Matthews, Keith</creatorcontrib><creatorcontrib>Coghill, David</creatorcontrib><creatorcontrib>Konrad, Kerstin</creatorcontrib><creatorcontrib>Steele, J. Douglas</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnston, Blair A.</au><au>Mwangi, Benson</au><au>Matthews, Keith</au><au>Coghill, David</au><au>Konrad, Kerstin</au><au>Steele, J. Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2014-10</date><risdate>2014</risdate><volume>35</volume><issue>10</issue><spage>5179</spage><epage>5189</epage><pages>5179-5189</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Despite extensive research, psychiatry remains an essentially clinical and, therefore, subjective clinical discipline, with no objective biomarkers to guide clinical practice and research. Development of psychiatric biomarkers is consequently important. A promising approach involves the use of machine learning with neuroimaging, to make predictions of diagnosis and treatment response for individual patients. Herein, we describe predictions of attention deficit hyperactivity disorder (ADHD) diagnosis using structural T1 weighted brain scans obtained from 34 young males with ADHD and 34 controls and a support vector machine. We report 93% accuracy of individual subject diagnostic prediction. Importantly, automated selection of brain regions supporting prediction was used. High accuracy prediction was supported by a region of reduced white matter in the brainstem, associated with a pons volumetric reduction in ADHD, adjacent to the noradrenergic locus coeruleus and dopaminergic ventral tegmental area nuclei. Medications used to treat ADHD modify dopaminergic and noradrenergic function. The white matter brainstem finding raises the possibility of “catecholamine disconnection or dysregulation” contributing to the ADHD syndrome, ameliorated by medication. Hum Brain Mapp 35:5179–5189, 2014. © 2014 Wiley Periodicals, Inc.</abstract><cop>New York, NY</cop><pub>Blackwell Publishing Ltd</pub><pmid>24819333</pmid><doi>10.1002/hbm.22542</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2014-10, Vol.35 (10), p.5179-5189
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6869620
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects ADHD
Adolescent
Attention Deficit Disorder with Hyperactivity - classification
Attention Deficit Disorder with Hyperactivity - diagnosis
Biological and medical sciences
Brain Mapping
Brain Stem - pathology
brainstem
Child
DARTEL
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Humans
Image Processing, Computer-Assisted
Investigative techniques, diagnostic techniques (general aspects)
machine learning
Magnetic Resonance Imaging
Male
Medical sciences
Nervous system
Nervous system (semeiology, syndromes)
Neurology
Predictive Value of Tests
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Support Vector Machine
Young Adult
title Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brainstem%20abnormalities%20in%20attention%20deficit%20hyperactivity%20disorder%20support%20high%20accuracy%20individual%20diagnostic%20classification&rft.jtitle=Human%20brain%20mapping&rft.au=Johnston,%20Blair%20A.&rft.date=2014-10&rft.volume=35&rft.issue=10&rft.spage=5179&rft.epage=5189&rft.pages=5179-5189&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.22542&rft_dat=%3Cproquest_pubme%3E3434135241%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562471094&rft_id=info:pmid/24819333&rfr_iscdi=true