Contextual control of audiovisual integration in low-level sensory cortices
Potential sources of multisensory influences on low‐level sensory cortices include direct projections from sensory cortices of different modalities, as well as more indirect feedback inputs from higher order multisensory cortical regions. These multiple architectures may be functionally complementar...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2014-05, Vol.35 (5), p.2394-2411 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2411 |
---|---|
container_issue | 5 |
container_start_page | 2394 |
container_title | Human brain mapping |
container_volume | 35 |
creator | van Atteveldt, Nienke M. Peterson, Bradley S. Schroeder, Charles E. |
description | Potential sources of multisensory influences on low‐level sensory cortices include direct projections from sensory cortices of different modalities, as well as more indirect feedback inputs from higher order multisensory cortical regions. These multiple architectures may be functionally complementary, but the exact roles and inter‐relationships of the circuits are unknown. Using a fully balanced context manipulation, we tested the hypotheses that: (1) feedforward and lateral pathways subserve speed functions, such as detecting peripheral stimuli. Multisensory integration effects in this context are predicted in peripheral fields of low‐level sensory cortices. (2) Slower feedback pathways underpin accuracy functions, such as object discrimination. Integration effects in this context are predicted in higher‐order association cortices and central/foveal fields of low‐level sensory cortex. We used functional magnetic resonance imaging to compare the effects of central versus peripheral stimulation on audiovisual integration, while varying speed and accuracy requirements for behavioral responses. We found that interactions of task demands and stimulus eccentricity in low‐level sensory cortices are more complex than would be predicted by a simple dichotomy such as our hypothesized peripheral/speed and foveal/accuracy functions. Additionally, our findings point to individual differences in integration that may be related to skills and strategy. Overall, our findings suggest that instead of using fixed, specialized pathways, the exact circuits and mechanisms that are used for low‐level multisensory integration are much more flexible and contingent upon both individual and contextual factors than previously assumed. Hum Brain Mapp 35:2394–2411, 2014. © 2013 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/hbm.22336 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6868991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1515645088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5116-ffabb7a366baa964a21f0bf2df0154d18f9d5c3d7f222ec64e8128485ddd5aa13</originalsourceid><addsrcrecordid>eNp1kV1rFDEYhQdRbK1e-AdkQAS9mDbfk9wUdNFWrApW8TK8k0na1OykJjNb99-bcbfrB3iVQ_Kc9z3hVNVjjA4xQuToslseEkKpuFPtY6TaBmFF785a8EaxFu9VD3K-QghjjvD9ao9QJYliYr96t4jDaH-ME4TaFJliqKOrYep9XPk8X_sCXCQYfRyKrkO8aYJd2VBnO-SY1sWXRm9sfljdcxCyfbQ9D6ovb15_Xpw2Zx9P3i5enjWGYywa56DrWqBCdABKMCDYoc6R3iHMWY-lUz03tG8dIcQawazERDLJ-77nAJgeVMebuddTt7S9sSU2BH2d_BLSWkfw-u-XwV_qi7jSQgqp1Dzg-XZAit8nm0e99NnYEGCwccoac8wF40jKgj79B72KUxrK92aKUUIUpYV6saFMijkn63ZhMNJzRbpUpH9VVNgnf6bfkbedFODZFoBsILgEg_H5Nydp2xLGC3e04W58sOv_b9Snr97frm42Dp9L5zsHpG9atLTl-uuHk6LOufrEhT6nPwE3Ybhh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1514322933</pqid></control><display><type>article</type><title>Contextual control of audiovisual integration in low-level sensory cortices</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>van Atteveldt, Nienke M. ; Peterson, Bradley S. ; Schroeder, Charles E.</creator><creatorcontrib>van Atteveldt, Nienke M. ; Peterson, Bradley S. ; Schroeder, Charles E.</creatorcontrib><description>Potential sources of multisensory influences on low‐level sensory cortices include direct projections from sensory cortices of different modalities, as well as more indirect feedback inputs from higher order multisensory cortical regions. These multiple architectures may be functionally complementary, but the exact roles and inter‐relationships of the circuits are unknown. Using a fully balanced context manipulation, we tested the hypotheses that: (1) feedforward and lateral pathways subserve speed functions, such as detecting peripheral stimuli. Multisensory integration effects in this context are predicted in peripheral fields of low‐level sensory cortices. (2) Slower feedback pathways underpin accuracy functions, such as object discrimination. Integration effects in this context are predicted in higher‐order association cortices and central/foveal fields of low‐level sensory cortex. We used functional magnetic resonance imaging to compare the effects of central versus peripheral stimulation on audiovisual integration, while varying speed and accuracy requirements for behavioral responses. We found that interactions of task demands and stimulus eccentricity in low‐level sensory cortices are more complex than would be predicted by a simple dichotomy such as our hypothesized peripheral/speed and foveal/accuracy functions. Additionally, our findings point to individual differences in integration that may be related to skills and strategy. Overall, our findings suggest that instead of using fixed, specialized pathways, the exact circuits and mechanisms that are used for low‐level multisensory integration are much more flexible and contingent upon both individual and contextual factors than previously assumed. Hum Brain Mapp 35:2394–2411, 2014. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.22336</identifier><identifier>PMID: 23982946</identifier><language>eng</language><publisher>New York, NY: Blackwell Publishing Ltd</publisher><subject>Acoustic Stimulation ; Adult ; Afferent Pathways - physiology ; auditory cortex ; Auditory Perception - physiology ; Biological and medical sciences ; Brain Mapping ; Cerebral Cortex - blood supply ; Cerebral Cortex - physiology ; eccentricity ; Eye Neoplasms ; Female ; fMRI ; Fundamental and applied biological sciences. Psychology ; Humans ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging ; Male ; Medical sciences ; multisensory ; Nervous system ; Oxygen - blood ; Photic Stimulation ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors ; task demand ; Vertebrates: nervous system and sense organs ; visual cortex ; Visual Perception - physiology ; Young Adult</subject><ispartof>Human brain mapping, 2014-05, Vol.35 (5), p.2394-2411</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5116-ffabb7a366baa964a21f0bf2df0154d18f9d5c3d7f222ec64e8128485ddd5aa13</citedby><cites>FETCH-LOGICAL-c5116-ffabb7a366baa964a21f0bf2df0154d18f9d5c3d7f222ec64e8128485ddd5aa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868991/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868991/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,27924,27925,45574,45575,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28377245$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23982946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Atteveldt, Nienke M.</creatorcontrib><creatorcontrib>Peterson, Bradley S.</creatorcontrib><creatorcontrib>Schroeder, Charles E.</creatorcontrib><title>Contextual control of audiovisual integration in low-level sensory cortices</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>Potential sources of multisensory influences on low‐level sensory cortices include direct projections from sensory cortices of different modalities, as well as more indirect feedback inputs from higher order multisensory cortical regions. These multiple architectures may be functionally complementary, but the exact roles and inter‐relationships of the circuits are unknown. Using a fully balanced context manipulation, we tested the hypotheses that: (1) feedforward and lateral pathways subserve speed functions, such as detecting peripheral stimuli. Multisensory integration effects in this context are predicted in peripheral fields of low‐level sensory cortices. (2) Slower feedback pathways underpin accuracy functions, such as object discrimination. Integration effects in this context are predicted in higher‐order association cortices and central/foveal fields of low‐level sensory cortex. We used functional magnetic resonance imaging to compare the effects of central versus peripheral stimulation on audiovisual integration, while varying speed and accuracy requirements for behavioral responses. We found that interactions of task demands and stimulus eccentricity in low‐level sensory cortices are more complex than would be predicted by a simple dichotomy such as our hypothesized peripheral/speed and foveal/accuracy functions. Additionally, our findings point to individual differences in integration that may be related to skills and strategy. Overall, our findings suggest that instead of using fixed, specialized pathways, the exact circuits and mechanisms that are used for low‐level multisensory integration are much more flexible and contingent upon both individual and contextual factors than previously assumed. Hum Brain Mapp 35:2394–2411, 2014. © 2013 Wiley Periodicals, Inc.</description><subject>Acoustic Stimulation</subject><subject>Adult</subject><subject>Afferent Pathways - physiology</subject><subject>auditory cortex</subject><subject>Auditory Perception - physiology</subject><subject>Biological and medical sciences</subject><subject>Brain Mapping</subject><subject>Cerebral Cortex - blood supply</subject><subject>Cerebral Cortex - physiology</subject><subject>eccentricity</subject><subject>Eye Neoplasms</subject><subject>Female</subject><subject>fMRI</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical sciences</subject><subject>multisensory</subject><subject>Nervous system</subject><subject>Oxygen - blood</subject><subject>Photic Stimulation</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors</subject><subject>task demand</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>visual cortex</subject><subject>Visual Perception - physiology</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEYhQdRbK1e-AdkQAS9mDbfk9wUdNFWrApW8TK8k0na1OykJjNb99-bcbfrB3iVQ_Kc9z3hVNVjjA4xQuToslseEkKpuFPtY6TaBmFF785a8EaxFu9VD3K-QghjjvD9ao9QJYliYr96t4jDaH-ME4TaFJliqKOrYep9XPk8X_sCXCQYfRyKrkO8aYJd2VBnO-SY1sWXRm9sfljdcxCyfbQ9D6ovb15_Xpw2Zx9P3i5enjWGYywa56DrWqBCdABKMCDYoc6R3iHMWY-lUz03tG8dIcQawazERDLJ-77nAJgeVMebuddTt7S9sSU2BH2d_BLSWkfw-u-XwV_qi7jSQgqp1Dzg-XZAit8nm0e99NnYEGCwccoac8wF40jKgj79B72KUxrK92aKUUIUpYV6saFMijkn63ZhMNJzRbpUpH9VVNgnf6bfkbedFODZFoBsILgEg_H5Nydp2xLGC3e04W58sOv_b9Snr97frm42Dp9L5zsHpG9atLTl-uuHk6LOufrEhT6nPwE3Ybhh</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>van Atteveldt, Nienke M.</creator><creator>Peterson, Bradley S.</creator><creator>Schroeder, Charles E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Liss</general><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201405</creationdate><title>Contextual control of audiovisual integration in low-level sensory cortices</title><author>van Atteveldt, Nienke M. ; Peterson, Bradley S. ; Schroeder, Charles E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5116-ffabb7a366baa964a21f0bf2df0154d18f9d5c3d7f222ec64e8128485ddd5aa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustic Stimulation</topic><topic>Adult</topic><topic>Afferent Pathways - physiology</topic><topic>auditory cortex</topic><topic>Auditory Perception - physiology</topic><topic>Biological and medical sciences</topic><topic>Brain Mapping</topic><topic>Cerebral Cortex - blood supply</topic><topic>Cerebral Cortex - physiology</topic><topic>eccentricity</topic><topic>Eye Neoplasms</topic><topic>Female</topic><topic>fMRI</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical sciences</topic><topic>multisensory</topic><topic>Nervous system</topic><topic>Oxygen - blood</topic><topic>Photic Stimulation</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors</topic><topic>task demand</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>visual cortex</topic><topic>Visual Perception - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Atteveldt, Nienke M.</creatorcontrib><creatorcontrib>Peterson, Bradley S.</creatorcontrib><creatorcontrib>Schroeder, Charles E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Atteveldt, Nienke M.</au><au>Peterson, Bradley S.</au><au>Schroeder, Charles E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contextual control of audiovisual integration in low-level sensory cortices</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2014-05</date><risdate>2014</risdate><volume>35</volume><issue>5</issue><spage>2394</spage><epage>2411</epage><pages>2394-2411</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Potential sources of multisensory influences on low‐level sensory cortices include direct projections from sensory cortices of different modalities, as well as more indirect feedback inputs from higher order multisensory cortical regions. These multiple architectures may be functionally complementary, but the exact roles and inter‐relationships of the circuits are unknown. Using a fully balanced context manipulation, we tested the hypotheses that: (1) feedforward and lateral pathways subserve speed functions, such as detecting peripheral stimuli. Multisensory integration effects in this context are predicted in peripheral fields of low‐level sensory cortices. (2) Slower feedback pathways underpin accuracy functions, such as object discrimination. Integration effects in this context are predicted in higher‐order association cortices and central/foveal fields of low‐level sensory cortex. We used functional magnetic resonance imaging to compare the effects of central versus peripheral stimulation on audiovisual integration, while varying speed and accuracy requirements for behavioral responses. We found that interactions of task demands and stimulus eccentricity in low‐level sensory cortices are more complex than would be predicted by a simple dichotomy such as our hypothesized peripheral/speed and foveal/accuracy functions. Additionally, our findings point to individual differences in integration that may be related to skills and strategy. Overall, our findings suggest that instead of using fixed, specialized pathways, the exact circuits and mechanisms that are used for low‐level multisensory integration are much more flexible and contingent upon both individual and contextual factors than previously assumed. Hum Brain Mapp 35:2394–2411, 2014. © 2013 Wiley Periodicals, Inc.</abstract><cop>New York, NY</cop><pub>Blackwell Publishing Ltd</pub><pmid>23982946</pmid><doi>10.1002/hbm.22336</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2014-05, Vol.35 (5), p.2394-2411 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6868991 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central |
subjects | Acoustic Stimulation Adult Afferent Pathways - physiology auditory cortex Auditory Perception - physiology Biological and medical sciences Brain Mapping Cerebral Cortex - blood supply Cerebral Cortex - physiology eccentricity Eye Neoplasms Female fMRI Fundamental and applied biological sciences. Psychology Humans Image Processing, Computer-Assisted Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging Male Medical sciences multisensory Nervous system Oxygen - blood Photic Stimulation Radiodiagnosis. Nmr imagery. Nmr spectrometry Somesthesis and somesthetic pathways (proprioception, exteroception, nociception) interoception electrolocation. Sensory receptors task demand Vertebrates: nervous system and sense organs visual cortex Visual Perception - physiology Young Adult |
title | Contextual control of audiovisual integration in low-level sensory cortices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contextual%20control%20of%20audiovisual%20integration%20in%20low-level%20sensory%20cortices&rft.jtitle=Human%20brain%20mapping&rft.au=van%20Atteveldt,%20Nienke%20M.&rft.date=2014-05&rft.volume=35&rft.issue=5&rft.spage=2394&rft.epage=2411&rft.pages=2394-2411&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.22336&rft_dat=%3Cproquest_pubme%3E1515645088%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1514322933&rft_id=info:pmid/23982946&rfr_iscdi=true |