Contextual control of audiovisual integration in low-level sensory cortices

Potential sources of multisensory influences on low‐level sensory cortices include direct projections from sensory cortices of different modalities, as well as more indirect feedback inputs from higher order multisensory cortical regions. These multiple architectures may be functionally complementar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2014-05, Vol.35 (5), p.2394-2411
Hauptverfasser: van Atteveldt, Nienke M., Peterson, Bradley S., Schroeder, Charles E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2411
container_issue 5
container_start_page 2394
container_title Human brain mapping
container_volume 35
creator van Atteveldt, Nienke M.
Peterson, Bradley S.
Schroeder, Charles E.
description Potential sources of multisensory influences on low‐level sensory cortices include direct projections from sensory cortices of different modalities, as well as more indirect feedback inputs from higher order multisensory cortical regions. These multiple architectures may be functionally complementary, but the exact roles and inter‐relationships of the circuits are unknown. Using a fully balanced context manipulation, we tested the hypotheses that: (1) feedforward and lateral pathways subserve speed functions, such as detecting peripheral stimuli. Multisensory integration effects in this context are predicted in peripheral fields of low‐level sensory cortices. (2) Slower feedback pathways underpin accuracy functions, such as object discrimination. Integration effects in this context are predicted in higher‐order association cortices and central/foveal fields of low‐level sensory cortex. We used functional magnetic resonance imaging to compare the effects of central versus peripheral stimulation on audiovisual integration, while varying speed and accuracy requirements for behavioral responses. We found that interactions of task demands and stimulus eccentricity in low‐level sensory cortices are more complex than would be predicted by a simple dichotomy such as our hypothesized peripheral/speed and foveal/accuracy functions. Additionally, our findings point to individual differences in integration that may be related to skills and strategy. Overall, our findings suggest that instead of using fixed, specialized pathways, the exact circuits and mechanisms that are used for low‐level multisensory integration are much more flexible and contingent upon both individual and contextual factors than previously assumed. Hum Brain Mapp 35:2394–2411, 2014. © 2013 Wiley Periodicals, Inc.
doi_str_mv 10.1002/hbm.22336
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6868991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1515645088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5116-ffabb7a366baa964a21f0bf2df0154d18f9d5c3d7f222ec64e8128485ddd5aa13</originalsourceid><addsrcrecordid>eNp1kV1rFDEYhQdRbK1e-AdkQAS9mDbfk9wUdNFWrApW8TK8k0na1OykJjNb99-bcbfrB3iVQ_Kc9z3hVNVjjA4xQuToslseEkKpuFPtY6TaBmFF785a8EaxFu9VD3K-QghjjvD9ao9QJYliYr96t4jDaH-ME4TaFJliqKOrYep9XPk8X_sCXCQYfRyKrkO8aYJd2VBnO-SY1sWXRm9sfljdcxCyfbQ9D6ovb15_Xpw2Zx9P3i5enjWGYywa56DrWqBCdABKMCDYoc6R3iHMWY-lUz03tG8dIcQawazERDLJ-77nAJgeVMebuddTt7S9sSU2BH2d_BLSWkfw-u-XwV_qi7jSQgqp1Dzg-XZAit8nm0e99NnYEGCwccoac8wF40jKgj79B72KUxrK92aKUUIUpYV6saFMijkn63ZhMNJzRbpUpH9VVNgnf6bfkbedFODZFoBsILgEg_H5Nydp2xLGC3e04W58sOv_b9Snr97frm42Dp9L5zsHpG9atLTl-uuHk6LOufrEhT6nPwE3Ybhh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1514322933</pqid></control><display><type>article</type><title>Contextual control of audiovisual integration in low-level sensory cortices</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>van Atteveldt, Nienke M. ; Peterson, Bradley S. ; Schroeder, Charles E.</creator><creatorcontrib>van Atteveldt, Nienke M. ; Peterson, Bradley S. ; Schroeder, Charles E.</creatorcontrib><description>Potential sources of multisensory influences on low‐level sensory cortices include direct projections from sensory cortices of different modalities, as well as more indirect feedback inputs from higher order multisensory cortical regions. These multiple architectures may be functionally complementary, but the exact roles and inter‐relationships of the circuits are unknown. Using a fully balanced context manipulation, we tested the hypotheses that: (1) feedforward and lateral pathways subserve speed functions, such as detecting peripheral stimuli. Multisensory integration effects in this context are predicted in peripheral fields of low‐level sensory cortices. (2) Slower feedback pathways underpin accuracy functions, such as object discrimination. Integration effects in this context are predicted in higher‐order association cortices and central/foveal fields of low‐level sensory cortex. We used functional magnetic resonance imaging to compare the effects of central versus peripheral stimulation on audiovisual integration, while varying speed and accuracy requirements for behavioral responses. We found that interactions of task demands and stimulus eccentricity in low‐level sensory cortices are more complex than would be predicted by a simple dichotomy such as our hypothesized peripheral/speed and foveal/accuracy functions. Additionally, our findings point to individual differences in integration that may be related to skills and strategy. Overall, our findings suggest that instead of using fixed, specialized pathways, the exact circuits and mechanisms that are used for low‐level multisensory integration are much more flexible and contingent upon both individual and contextual factors than previously assumed. Hum Brain Mapp 35:2394–2411, 2014. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.22336</identifier><identifier>PMID: 23982946</identifier><language>eng</language><publisher>New York, NY: Blackwell Publishing Ltd</publisher><subject>Acoustic Stimulation ; Adult ; Afferent Pathways - physiology ; auditory cortex ; Auditory Perception - physiology ; Biological and medical sciences ; Brain Mapping ; Cerebral Cortex - blood supply ; Cerebral Cortex - physiology ; eccentricity ; Eye Neoplasms ; Female ; fMRI ; Fundamental and applied biological sciences. Psychology ; Humans ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging ; Male ; Medical sciences ; multisensory ; Nervous system ; Oxygen - blood ; Photic Stimulation ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors ; task demand ; Vertebrates: nervous system and sense organs ; visual cortex ; Visual Perception - physiology ; Young Adult</subject><ispartof>Human brain mapping, 2014-05, Vol.35 (5), p.2394-2411</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5116-ffabb7a366baa964a21f0bf2df0154d18f9d5c3d7f222ec64e8128485ddd5aa13</citedby><cites>FETCH-LOGICAL-c5116-ffabb7a366baa964a21f0bf2df0154d18f9d5c3d7f222ec64e8128485ddd5aa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868991/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868991/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,27924,27925,45574,45575,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28377245$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23982946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Atteveldt, Nienke M.</creatorcontrib><creatorcontrib>Peterson, Bradley S.</creatorcontrib><creatorcontrib>Schroeder, Charles E.</creatorcontrib><title>Contextual control of audiovisual integration in low-level sensory cortices</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>Potential sources of multisensory influences on low‐level sensory cortices include direct projections from sensory cortices of different modalities, as well as more indirect feedback inputs from higher order multisensory cortical regions. These multiple architectures may be functionally complementary, but the exact roles and inter‐relationships of the circuits are unknown. Using a fully balanced context manipulation, we tested the hypotheses that: (1) feedforward and lateral pathways subserve speed functions, such as detecting peripheral stimuli. Multisensory integration effects in this context are predicted in peripheral fields of low‐level sensory cortices. (2) Slower feedback pathways underpin accuracy functions, such as object discrimination. Integration effects in this context are predicted in higher‐order association cortices and central/foveal fields of low‐level sensory cortex. We used functional magnetic resonance imaging to compare the effects of central versus peripheral stimulation on audiovisual integration, while varying speed and accuracy requirements for behavioral responses. We found that interactions of task demands and stimulus eccentricity in low‐level sensory cortices are more complex than would be predicted by a simple dichotomy such as our hypothesized peripheral/speed and foveal/accuracy functions. Additionally, our findings point to individual differences in integration that may be related to skills and strategy. Overall, our findings suggest that instead of using fixed, specialized pathways, the exact circuits and mechanisms that are used for low‐level multisensory integration are much more flexible and contingent upon both individual and contextual factors than previously assumed. Hum Brain Mapp 35:2394–2411, 2014. © 2013 Wiley Periodicals, Inc.</description><subject>Acoustic Stimulation</subject><subject>Adult</subject><subject>Afferent Pathways - physiology</subject><subject>auditory cortex</subject><subject>Auditory Perception - physiology</subject><subject>Biological and medical sciences</subject><subject>Brain Mapping</subject><subject>Cerebral Cortex - blood supply</subject><subject>Cerebral Cortex - physiology</subject><subject>eccentricity</subject><subject>Eye Neoplasms</subject><subject>Female</subject><subject>fMRI</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical sciences</subject><subject>multisensory</subject><subject>Nervous system</subject><subject>Oxygen - blood</subject><subject>Photic Stimulation</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors</subject><subject>task demand</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>visual cortex</subject><subject>Visual Perception - physiology</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEYhQdRbK1e-AdkQAS9mDbfk9wUdNFWrApW8TK8k0na1OykJjNb99-bcbfrB3iVQ_Kc9z3hVNVjjA4xQuToslseEkKpuFPtY6TaBmFF785a8EaxFu9VD3K-QghjjvD9ao9QJYliYr96t4jDaH-ME4TaFJliqKOrYep9XPk8X_sCXCQYfRyKrkO8aYJd2VBnO-SY1sWXRm9sfljdcxCyfbQ9D6ovb15_Xpw2Zx9P3i5enjWGYywa56DrWqBCdABKMCDYoc6R3iHMWY-lUz03tG8dIcQawazERDLJ-77nAJgeVMebuddTt7S9sSU2BH2d_BLSWkfw-u-XwV_qi7jSQgqp1Dzg-XZAit8nm0e99NnYEGCwccoac8wF40jKgj79B72KUxrK92aKUUIUpYV6saFMijkn63ZhMNJzRbpUpH9VVNgnf6bfkbedFODZFoBsILgEg_H5Nydp2xLGC3e04W58sOv_b9Snr97frm42Dp9L5zsHpG9atLTl-uuHk6LOufrEhT6nPwE3Ybhh</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>van Atteveldt, Nienke M.</creator><creator>Peterson, Bradley S.</creator><creator>Schroeder, Charles E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Liss</general><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201405</creationdate><title>Contextual control of audiovisual integration in low-level sensory cortices</title><author>van Atteveldt, Nienke M. ; Peterson, Bradley S. ; Schroeder, Charles E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5116-ffabb7a366baa964a21f0bf2df0154d18f9d5c3d7f222ec64e8128485ddd5aa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustic Stimulation</topic><topic>Adult</topic><topic>Afferent Pathways - physiology</topic><topic>auditory cortex</topic><topic>Auditory Perception - physiology</topic><topic>Biological and medical sciences</topic><topic>Brain Mapping</topic><topic>Cerebral Cortex - blood supply</topic><topic>Cerebral Cortex - physiology</topic><topic>eccentricity</topic><topic>Eye Neoplasms</topic><topic>Female</topic><topic>fMRI</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical sciences</topic><topic>multisensory</topic><topic>Nervous system</topic><topic>Oxygen - blood</topic><topic>Photic Stimulation</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors</topic><topic>task demand</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>visual cortex</topic><topic>Visual Perception - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Atteveldt, Nienke M.</creatorcontrib><creatorcontrib>Peterson, Bradley S.</creatorcontrib><creatorcontrib>Schroeder, Charles E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Atteveldt, Nienke M.</au><au>Peterson, Bradley S.</au><au>Schroeder, Charles E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contextual control of audiovisual integration in low-level sensory cortices</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2014-05</date><risdate>2014</risdate><volume>35</volume><issue>5</issue><spage>2394</spage><epage>2411</epage><pages>2394-2411</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Potential sources of multisensory influences on low‐level sensory cortices include direct projections from sensory cortices of different modalities, as well as more indirect feedback inputs from higher order multisensory cortical regions. These multiple architectures may be functionally complementary, but the exact roles and inter‐relationships of the circuits are unknown. Using a fully balanced context manipulation, we tested the hypotheses that: (1) feedforward and lateral pathways subserve speed functions, such as detecting peripheral stimuli. Multisensory integration effects in this context are predicted in peripheral fields of low‐level sensory cortices. (2) Slower feedback pathways underpin accuracy functions, such as object discrimination. Integration effects in this context are predicted in higher‐order association cortices and central/foveal fields of low‐level sensory cortex. We used functional magnetic resonance imaging to compare the effects of central versus peripheral stimulation on audiovisual integration, while varying speed and accuracy requirements for behavioral responses. We found that interactions of task demands and stimulus eccentricity in low‐level sensory cortices are more complex than would be predicted by a simple dichotomy such as our hypothesized peripheral/speed and foveal/accuracy functions. Additionally, our findings point to individual differences in integration that may be related to skills and strategy. Overall, our findings suggest that instead of using fixed, specialized pathways, the exact circuits and mechanisms that are used for low‐level multisensory integration are much more flexible and contingent upon both individual and contextual factors than previously assumed. Hum Brain Mapp 35:2394–2411, 2014. © 2013 Wiley Periodicals, Inc.</abstract><cop>New York, NY</cop><pub>Blackwell Publishing Ltd</pub><pmid>23982946</pmid><doi>10.1002/hbm.22336</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2014-05, Vol.35 (5), p.2394-2411
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6868991
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Acoustic Stimulation
Adult
Afferent Pathways - physiology
auditory cortex
Auditory Perception - physiology
Biological and medical sciences
Brain Mapping
Cerebral Cortex - blood supply
Cerebral Cortex - physiology
eccentricity
Eye Neoplasms
Female
fMRI
Fundamental and applied biological sciences. Psychology
Humans
Image Processing, Computer-Assisted
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging
Male
Medical sciences
multisensory
Nervous system
Oxygen - blood
Photic Stimulation
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Somesthesis and somesthetic pathways (proprioception, exteroception, nociception)
interoception
electrolocation. Sensory receptors
task demand
Vertebrates: nervous system and sense organs
visual cortex
Visual Perception - physiology
Young Adult
title Contextual control of audiovisual integration in low-level sensory cortices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contextual%20control%20of%20audiovisual%20integration%20in%20low-level%20sensory%20cortices&rft.jtitle=Human%20brain%20mapping&rft.au=van%20Atteveldt,%20Nienke%20M.&rft.date=2014-05&rft.volume=35&rft.issue=5&rft.spage=2394&rft.epage=2411&rft.pages=2394-2411&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.22336&rft_dat=%3Cproquest_pubme%3E1515645088%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1514322933&rft_id=info:pmid/23982946&rfr_iscdi=true