Multi‐parameter machine learning approach to the neuroanatomical basis of developmental dyslexia

Despite decades of research, the anatomical abnormalities associated with developmental dyslexia are still not fully described. Studies have focused on between‐group comparisons in which different neuroanatomical measures were generally explored in isolation, disregarding potential interactions betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2017-02, Vol.38 (2), p.900-908
Hauptverfasser: Płoński, Piotr, Gradkowski, Wojciech, Altarelli, Irene, Monzalvo, Karla, van Ermingen‐Marbach, Muna, Grande, Marion, Heim, Stefan, Marchewka, Artur, Bogorodzki, Piotr, Ramus, Franck, Jednoróg, Katarzyna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 908
container_issue 2
container_start_page 900
container_title Human brain mapping
container_volume 38
creator Płoński, Piotr
Gradkowski, Wojciech
Altarelli, Irene
Monzalvo, Karla
van Ermingen‐Marbach, Muna
Grande, Marion
Heim, Stefan
Marchewka, Artur
Bogorodzki, Piotr
Ramus, Franck
Jednoróg, Katarzyna
description Despite decades of research, the anatomical abnormalities associated with developmental dyslexia are still not fully described. Studies have focused on between‐group comparisons in which different neuroanatomical measures were generally explored in isolation, disregarding potential interactions between regions and measures. Here, for the first time a multivariate classification approach was used to investigate grey matter disruptions in children with dyslexia in a large (N = 236) multisite sample. A variety of cortical morphological features, including volumetric (volume, thickness and area) and geometric (folding index and mean curvature) measures were taken into account and generalizability of classification was assessed with both 10‐fold and leave‐one‐out cross validation (LOOCV) techniques. Classification into control vs. dyslexic subjects achieved above chance accuracy (AUC = 0.66 and ACC = 0.65 in the case of 10‐fold CV, and AUC = 0.65 and ACC = 0.64 using LOOCV) after principled feature selection. Features that discriminated between dyslexic and control children were exclusively situated in the left hemisphere including superior and middle temporal gyri, subparietal sulcus and prefrontal areas. They were related to geometric properties of the cortex, with generally higher mean curvature and a greater folding index characterizing the dyslexic group. Our results support the hypothesis that an atypical curvature pattern with extra folds in left hemispheric perisylvian regions characterizes dyslexia. Hum Brain Mapp 38:900–908, 2017. © 2016 Wiley Periodicals, Inc.
doi_str_mv 10.1002/hbm.23426
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6867128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835364776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4766-2a88474ab9b3af60d902eacaf1adb9c533d3de8704b121822b72457d516491a93</originalsourceid><addsrcrecordid>eNqNkktuFDEQhi1EREJgwQWQJTaw6MTvxwYpRJCJNBEbWFvV3Z60I3e76cfA7HKEnJGT4JlJIsiKlctVX_0uVxVCbyg5oYSw06ZsTxgXTD1DR5RYXRBq-fOtrWRhhaaH6OU43hBCqST0BTpkWlOWM49QeTXHKfy-vethgNZPfsAtVE3oPI4ehi501xj6fkjZiaeEp8bjzs_53sGU2lBBxCWMYcRphWu_9jH1re-m7K43Y_S_ArxCByuIo399fx6j718-fztfFMuvF5fnZ8uiElqpgoExQgsobclhpUhtCfNQwYpCXdpKcl7z2htNREkZNYyVmgmpa0mVsBQsP0Yf97r9XLa-rnIVA0TXD6GFYeMSBPdvpAuNu05rp4zK7TBZ4MNeoHmStjhbuq2PUEGIlHZNM_v-_rEh_Zj9OLk2jJWPETqf5tFRowxnRkrxHyiXXAmtVUbfPUFv0jx0uWuZksrs5papt39_9LHUh6lm4HQP_AzRbx7jlLjturi8Lm63Lm7x6Wpn8D-JTrLM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856827712</pqid></control><display><type>article</type><title>Multi‐parameter machine learning approach to the neuroanatomical basis of developmental dyslexia</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Płoński, Piotr ; Gradkowski, Wojciech ; Altarelli, Irene ; Monzalvo, Karla ; van Ermingen‐Marbach, Muna ; Grande, Marion ; Heim, Stefan ; Marchewka, Artur ; Bogorodzki, Piotr ; Ramus, Franck ; Jednoróg, Katarzyna</creator><creatorcontrib>Płoński, Piotr ; Gradkowski, Wojciech ; Altarelli, Irene ; Monzalvo, Karla ; van Ermingen‐Marbach, Muna ; Grande, Marion ; Heim, Stefan ; Marchewka, Artur ; Bogorodzki, Piotr ; Ramus, Franck ; Jednoróg, Katarzyna</creatorcontrib><description>Despite decades of research, the anatomical abnormalities associated with developmental dyslexia are still not fully described. Studies have focused on between‐group comparisons in which different neuroanatomical measures were generally explored in isolation, disregarding potential interactions between regions and measures. Here, for the first time a multivariate classification approach was used to investigate grey matter disruptions in children with dyslexia in a large (N = 236) multisite sample. A variety of cortical morphological features, including volumetric (volume, thickness and area) and geometric (folding index and mean curvature) measures were taken into account and generalizability of classification was assessed with both 10‐fold and leave‐one‐out cross validation (LOOCV) techniques. Classification into control vs. dyslexic subjects achieved above chance accuracy (AUC = 0.66 and ACC = 0.65 in the case of 10‐fold CV, and AUC = 0.65 and ACC = 0.64 using LOOCV) after principled feature selection. Features that discriminated between dyslexic and control children were exclusively situated in the left hemisphere including superior and middle temporal gyri, subparietal sulcus and prefrontal areas. They were related to geometric properties of the cortex, with generally higher mean curvature and a greater folding index characterizing the dyslexic group. Our results support the hypothesis that an atypical curvature pattern with extra folds in left hemispheric perisylvian regions characterizes dyslexia. Hum Brain Mapp 38:900–908, 2017. © 2016 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.23426</identifier><identifier>PMID: 27712002</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Adolescent ; Algorithms ; Area Under Curve ; brain anatomy ; Brain Mapping ; Cerebral Cortex - diagnostic imaging ; Cerebral Cortex - pathology ; Child ; Cognitive Sciences ; Databases, Factual ; developmental dyslexia ; Dyslexia - diagnostic imaging ; Dyslexia - pathology ; Female ; France ; Functional Laterality ; Germany ; grey matter ; Humans ; Life Sciences ; Machine Learning ; Magnetic Resonance Imaging ; Male ; Neurons and Cognition ; Poland ; reading impairment</subject><ispartof>Human brain mapping, 2017-02, Vol.38 (2), p.900-908</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4766-2a88474ab9b3af60d902eacaf1adb9c533d3de8704b121822b72457d516491a93</citedby><orcidid>0000-0002-1982-3299 ; 0000-0002-1122-5913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867128/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867128/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27712002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01400559$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Płoński, Piotr</creatorcontrib><creatorcontrib>Gradkowski, Wojciech</creatorcontrib><creatorcontrib>Altarelli, Irene</creatorcontrib><creatorcontrib>Monzalvo, Karla</creatorcontrib><creatorcontrib>van Ermingen‐Marbach, Muna</creatorcontrib><creatorcontrib>Grande, Marion</creatorcontrib><creatorcontrib>Heim, Stefan</creatorcontrib><creatorcontrib>Marchewka, Artur</creatorcontrib><creatorcontrib>Bogorodzki, Piotr</creatorcontrib><creatorcontrib>Ramus, Franck</creatorcontrib><creatorcontrib>Jednoróg, Katarzyna</creatorcontrib><title>Multi‐parameter machine learning approach to the neuroanatomical basis of developmental dyslexia</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Despite decades of research, the anatomical abnormalities associated with developmental dyslexia are still not fully described. Studies have focused on between‐group comparisons in which different neuroanatomical measures were generally explored in isolation, disregarding potential interactions between regions and measures. Here, for the first time a multivariate classification approach was used to investigate grey matter disruptions in children with dyslexia in a large (N = 236) multisite sample. A variety of cortical morphological features, including volumetric (volume, thickness and area) and geometric (folding index and mean curvature) measures were taken into account and generalizability of classification was assessed with both 10‐fold and leave‐one‐out cross validation (LOOCV) techniques. Classification into control vs. dyslexic subjects achieved above chance accuracy (AUC = 0.66 and ACC = 0.65 in the case of 10‐fold CV, and AUC = 0.65 and ACC = 0.64 using LOOCV) after principled feature selection. Features that discriminated between dyslexic and control children were exclusively situated in the left hemisphere including superior and middle temporal gyri, subparietal sulcus and prefrontal areas. They were related to geometric properties of the cortex, with generally higher mean curvature and a greater folding index characterizing the dyslexic group. Our results support the hypothesis that an atypical curvature pattern with extra folds in left hemispheric perisylvian regions characterizes dyslexia. Hum Brain Mapp 38:900–908, 2017. © 2016 Wiley Periodicals, Inc.</description><subject>Adolescent</subject><subject>Algorithms</subject><subject>Area Under Curve</subject><subject>brain anatomy</subject><subject>Brain Mapping</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cerebral Cortex - pathology</subject><subject>Child</subject><subject>Cognitive Sciences</subject><subject>Databases, Factual</subject><subject>developmental dyslexia</subject><subject>Dyslexia - diagnostic imaging</subject><subject>Dyslexia - pathology</subject><subject>Female</subject><subject>France</subject><subject>Functional Laterality</subject><subject>Germany</subject><subject>grey matter</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Neurons and Cognition</subject><subject>Poland</subject><subject>reading impairment</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktuFDEQhi1EREJgwQWQJTaw6MTvxwYpRJCJNBEbWFvV3Z60I3e76cfA7HKEnJGT4JlJIsiKlctVX_0uVxVCbyg5oYSw06ZsTxgXTD1DR5RYXRBq-fOtrWRhhaaH6OU43hBCqST0BTpkWlOWM49QeTXHKfy-vethgNZPfsAtVE3oPI4ehi501xj6fkjZiaeEp8bjzs_53sGU2lBBxCWMYcRphWu_9jH1re-m7K43Y_S_ArxCByuIo399fx6j718-fztfFMuvF5fnZ8uiElqpgoExQgsobclhpUhtCfNQwYpCXdpKcl7z2htNREkZNYyVmgmpa0mVsBQsP0Yf97r9XLa-rnIVA0TXD6GFYeMSBPdvpAuNu05rp4zK7TBZ4MNeoHmStjhbuq2PUEGIlHZNM_v-_rEh_Zj9OLk2jJWPETqf5tFRowxnRkrxHyiXXAmtVUbfPUFv0jx0uWuZksrs5papt39_9LHUh6lm4HQP_AzRbx7jlLjturi8Lm63Lm7x6Wpn8D-JTrLM</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Płoński, Piotr</creator><creator>Gradkowski, Wojciech</creator><creator>Altarelli, Irene</creator><creator>Monzalvo, Karla</creator><creator>van Ermingen‐Marbach, Muna</creator><creator>Grande, Marion</creator><creator>Heim, Stefan</creator><creator>Marchewka, Artur</creator><creator>Bogorodzki, Piotr</creator><creator>Ramus, Franck</creator><creator>Jednoróg, Katarzyna</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1982-3299</orcidid><orcidid>https://orcid.org/0000-0002-1122-5913</orcidid></search><sort><creationdate>201702</creationdate><title>Multi‐parameter machine learning approach to the neuroanatomical basis of developmental dyslexia</title><author>Płoński, Piotr ; Gradkowski, Wojciech ; Altarelli, Irene ; Monzalvo, Karla ; van Ermingen‐Marbach, Muna ; Grande, Marion ; Heim, Stefan ; Marchewka, Artur ; Bogorodzki, Piotr ; Ramus, Franck ; Jednoróg, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4766-2a88474ab9b3af60d902eacaf1adb9c533d3de8704b121822b72457d516491a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Algorithms</topic><topic>Area Under Curve</topic><topic>brain anatomy</topic><topic>Brain Mapping</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cerebral Cortex - pathology</topic><topic>Child</topic><topic>Cognitive Sciences</topic><topic>Databases, Factual</topic><topic>developmental dyslexia</topic><topic>Dyslexia - diagnostic imaging</topic><topic>Dyslexia - pathology</topic><topic>Female</topic><topic>France</topic><topic>Functional Laterality</topic><topic>Germany</topic><topic>grey matter</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Neurons and Cognition</topic><topic>Poland</topic><topic>reading impairment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Płoński, Piotr</creatorcontrib><creatorcontrib>Gradkowski, Wojciech</creatorcontrib><creatorcontrib>Altarelli, Irene</creatorcontrib><creatorcontrib>Monzalvo, Karla</creatorcontrib><creatorcontrib>van Ermingen‐Marbach, Muna</creatorcontrib><creatorcontrib>Grande, Marion</creatorcontrib><creatorcontrib>Heim, Stefan</creatorcontrib><creatorcontrib>Marchewka, Artur</creatorcontrib><creatorcontrib>Bogorodzki, Piotr</creatorcontrib><creatorcontrib>Ramus, Franck</creatorcontrib><creatorcontrib>Jednoróg, Katarzyna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Płoński, Piotr</au><au>Gradkowski, Wojciech</au><au>Altarelli, Irene</au><au>Monzalvo, Karla</au><au>van Ermingen‐Marbach, Muna</au><au>Grande, Marion</au><au>Heim, Stefan</au><au>Marchewka, Artur</au><au>Bogorodzki, Piotr</au><au>Ramus, Franck</au><au>Jednoróg, Katarzyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐parameter machine learning approach to the neuroanatomical basis of developmental dyslexia</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2017-02</date><risdate>2017</risdate><volume>38</volume><issue>2</issue><spage>900</spage><epage>908</epage><pages>900-908</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Despite decades of research, the anatomical abnormalities associated with developmental dyslexia are still not fully described. Studies have focused on between‐group comparisons in which different neuroanatomical measures were generally explored in isolation, disregarding potential interactions between regions and measures. Here, for the first time a multivariate classification approach was used to investigate grey matter disruptions in children with dyslexia in a large (N = 236) multisite sample. A variety of cortical morphological features, including volumetric (volume, thickness and area) and geometric (folding index and mean curvature) measures were taken into account and generalizability of classification was assessed with both 10‐fold and leave‐one‐out cross validation (LOOCV) techniques. Classification into control vs. dyslexic subjects achieved above chance accuracy (AUC = 0.66 and ACC = 0.65 in the case of 10‐fold CV, and AUC = 0.65 and ACC = 0.64 using LOOCV) after principled feature selection. Features that discriminated between dyslexic and control children were exclusively situated in the left hemisphere including superior and middle temporal gyri, subparietal sulcus and prefrontal areas. They were related to geometric properties of the cortex, with generally higher mean curvature and a greater folding index characterizing the dyslexic group. Our results support the hypothesis that an atypical curvature pattern with extra folds in left hemispheric perisylvian regions characterizes dyslexia. Hum Brain Mapp 38:900–908, 2017. © 2016 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>27712002</pmid><doi>10.1002/hbm.23426</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1982-3299</orcidid><orcidid>https://orcid.org/0000-0002-1122-5913</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2017-02, Vol.38 (2), p.900-908
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6867128
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adolescent
Algorithms
Area Under Curve
brain anatomy
Brain Mapping
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - pathology
Child
Cognitive Sciences
Databases, Factual
developmental dyslexia
Dyslexia - diagnostic imaging
Dyslexia - pathology
Female
France
Functional Laterality
Germany
grey matter
Humans
Life Sciences
Machine Learning
Magnetic Resonance Imaging
Male
Neurons and Cognition
Poland
reading impairment
title Multi‐parameter machine learning approach to the neuroanatomical basis of developmental dyslexia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90parameter%20machine%20learning%20approach%20to%20the%20neuroanatomical%20basis%20of%20developmental%20dyslexia&rft.jtitle=Human%20brain%20mapping&rft.au=P%C5%82o%C5%84ski,%20Piotr&rft.date=2017-02&rft.volume=38&rft.issue=2&rft.spage=900&rft.epage=908&rft.pages=900-908&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.23426&rft_dat=%3Cproquest_pubme%3E1835364776%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856827712&rft_id=info:pmid/27712002&rfr_iscdi=true