Multi‐parameter machine learning approach to the neuroanatomical basis of developmental dyslexia
Despite decades of research, the anatomical abnormalities associated with developmental dyslexia are still not fully described. Studies have focused on between‐group comparisons in which different neuroanatomical measures were generally explored in isolation, disregarding potential interactions betw...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2017-02, Vol.38 (2), p.900-908 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 908 |
---|---|
container_issue | 2 |
container_start_page | 900 |
container_title | Human brain mapping |
container_volume | 38 |
creator | Płoński, Piotr Gradkowski, Wojciech Altarelli, Irene Monzalvo, Karla van Ermingen‐Marbach, Muna Grande, Marion Heim, Stefan Marchewka, Artur Bogorodzki, Piotr Ramus, Franck Jednoróg, Katarzyna |
description | Despite decades of research, the anatomical abnormalities associated with developmental dyslexia are still not fully described. Studies have focused on between‐group comparisons in which different neuroanatomical measures were generally explored in isolation, disregarding potential interactions between regions and measures. Here, for the first time a multivariate classification approach was used to investigate grey matter disruptions in children with dyslexia in a large (N = 236) multisite sample. A variety of cortical morphological features, including volumetric (volume, thickness and area) and geometric (folding index and mean curvature) measures were taken into account and generalizability of classification was assessed with both 10‐fold and leave‐one‐out cross validation (LOOCV) techniques. Classification into control vs. dyslexic subjects achieved above chance accuracy (AUC = 0.66 and ACC = 0.65 in the case of 10‐fold CV, and AUC = 0.65 and ACC = 0.64 using LOOCV) after principled feature selection. Features that discriminated between dyslexic and control children were exclusively situated in the left hemisphere including superior and middle temporal gyri, subparietal sulcus and prefrontal areas. They were related to geometric properties of the cortex, with generally higher mean curvature and a greater folding index characterizing the dyslexic group. Our results support the hypothesis that an atypical curvature pattern with extra folds in left hemispheric perisylvian regions characterizes dyslexia. Hum Brain Mapp 38:900–908, 2017. © 2016 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/hbm.23426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6867128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835364776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4766-2a88474ab9b3af60d902eacaf1adb9c533d3de8704b121822b72457d516491a93</originalsourceid><addsrcrecordid>eNqNkktuFDEQhi1EREJgwQWQJTaw6MTvxwYpRJCJNBEbWFvV3Z60I3e76cfA7HKEnJGT4JlJIsiKlctVX_0uVxVCbyg5oYSw06ZsTxgXTD1DR5RYXRBq-fOtrWRhhaaH6OU43hBCqST0BTpkWlOWM49QeTXHKfy-vethgNZPfsAtVE3oPI4ehi501xj6fkjZiaeEp8bjzs_53sGU2lBBxCWMYcRphWu_9jH1re-m7K43Y_S_ArxCByuIo399fx6j718-fztfFMuvF5fnZ8uiElqpgoExQgsobclhpUhtCfNQwYpCXdpKcl7z2htNREkZNYyVmgmpa0mVsBQsP0Yf97r9XLa-rnIVA0TXD6GFYeMSBPdvpAuNu05rp4zK7TBZ4MNeoHmStjhbuq2PUEGIlHZNM_v-_rEh_Zj9OLk2jJWPETqf5tFRowxnRkrxHyiXXAmtVUbfPUFv0jx0uWuZksrs5papt39_9LHUh6lm4HQP_AzRbx7jlLjturi8Lm63Lm7x6Wpn8D-JTrLM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856827712</pqid></control><display><type>article</type><title>Multi‐parameter machine learning approach to the neuroanatomical basis of developmental dyslexia</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Płoński, Piotr ; Gradkowski, Wojciech ; Altarelli, Irene ; Monzalvo, Karla ; van Ermingen‐Marbach, Muna ; Grande, Marion ; Heim, Stefan ; Marchewka, Artur ; Bogorodzki, Piotr ; Ramus, Franck ; Jednoróg, Katarzyna</creator><creatorcontrib>Płoński, Piotr ; Gradkowski, Wojciech ; Altarelli, Irene ; Monzalvo, Karla ; van Ermingen‐Marbach, Muna ; Grande, Marion ; Heim, Stefan ; Marchewka, Artur ; Bogorodzki, Piotr ; Ramus, Franck ; Jednoróg, Katarzyna</creatorcontrib><description>Despite decades of research, the anatomical abnormalities associated with developmental dyslexia are still not fully described. Studies have focused on between‐group comparisons in which different neuroanatomical measures were generally explored in isolation, disregarding potential interactions between regions and measures. Here, for the first time a multivariate classification approach was used to investigate grey matter disruptions in children with dyslexia in a large (N = 236) multisite sample. A variety of cortical morphological features, including volumetric (volume, thickness and area) and geometric (folding index and mean curvature) measures were taken into account and generalizability of classification was assessed with both 10‐fold and leave‐one‐out cross validation (LOOCV) techniques. Classification into control vs. dyslexic subjects achieved above chance accuracy (AUC = 0.66 and ACC = 0.65 in the case of 10‐fold CV, and AUC = 0.65 and ACC = 0.64 using LOOCV) after principled feature selection. Features that discriminated between dyslexic and control children were exclusively situated in the left hemisphere including superior and middle temporal gyri, subparietal sulcus and prefrontal areas. They were related to geometric properties of the cortex, with generally higher mean curvature and a greater folding index characterizing the dyslexic group. Our results support the hypothesis that an atypical curvature pattern with extra folds in left hemispheric perisylvian regions characterizes dyslexia. Hum Brain Mapp 38:900–908, 2017. © 2016 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.23426</identifier><identifier>PMID: 27712002</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Adolescent ; Algorithms ; Area Under Curve ; brain anatomy ; Brain Mapping ; Cerebral Cortex - diagnostic imaging ; Cerebral Cortex - pathology ; Child ; Cognitive Sciences ; Databases, Factual ; developmental dyslexia ; Dyslexia - diagnostic imaging ; Dyslexia - pathology ; Female ; France ; Functional Laterality ; Germany ; grey matter ; Humans ; Life Sciences ; Machine Learning ; Magnetic Resonance Imaging ; Male ; Neurons and Cognition ; Poland ; reading impairment</subject><ispartof>Human brain mapping, 2017-02, Vol.38 (2), p.900-908</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4766-2a88474ab9b3af60d902eacaf1adb9c533d3de8704b121822b72457d516491a93</citedby><orcidid>0000-0002-1982-3299 ; 0000-0002-1122-5913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867128/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867128/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27712002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01400559$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Płoński, Piotr</creatorcontrib><creatorcontrib>Gradkowski, Wojciech</creatorcontrib><creatorcontrib>Altarelli, Irene</creatorcontrib><creatorcontrib>Monzalvo, Karla</creatorcontrib><creatorcontrib>van Ermingen‐Marbach, Muna</creatorcontrib><creatorcontrib>Grande, Marion</creatorcontrib><creatorcontrib>Heim, Stefan</creatorcontrib><creatorcontrib>Marchewka, Artur</creatorcontrib><creatorcontrib>Bogorodzki, Piotr</creatorcontrib><creatorcontrib>Ramus, Franck</creatorcontrib><creatorcontrib>Jednoróg, Katarzyna</creatorcontrib><title>Multi‐parameter machine learning approach to the neuroanatomical basis of developmental dyslexia</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Despite decades of research, the anatomical abnormalities associated with developmental dyslexia are still not fully described. Studies have focused on between‐group comparisons in which different neuroanatomical measures were generally explored in isolation, disregarding potential interactions between regions and measures. Here, for the first time a multivariate classification approach was used to investigate grey matter disruptions in children with dyslexia in a large (N = 236) multisite sample. A variety of cortical morphological features, including volumetric (volume, thickness and area) and geometric (folding index and mean curvature) measures were taken into account and generalizability of classification was assessed with both 10‐fold and leave‐one‐out cross validation (LOOCV) techniques. Classification into control vs. dyslexic subjects achieved above chance accuracy (AUC = 0.66 and ACC = 0.65 in the case of 10‐fold CV, and AUC = 0.65 and ACC = 0.64 using LOOCV) after principled feature selection. Features that discriminated between dyslexic and control children were exclusively situated in the left hemisphere including superior and middle temporal gyri, subparietal sulcus and prefrontal areas. They were related to geometric properties of the cortex, with generally higher mean curvature and a greater folding index characterizing the dyslexic group. Our results support the hypothesis that an atypical curvature pattern with extra folds in left hemispheric perisylvian regions characterizes dyslexia. Hum Brain Mapp 38:900–908, 2017. © 2016 Wiley Periodicals, Inc.</description><subject>Adolescent</subject><subject>Algorithms</subject><subject>Area Under Curve</subject><subject>brain anatomy</subject><subject>Brain Mapping</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cerebral Cortex - pathology</subject><subject>Child</subject><subject>Cognitive Sciences</subject><subject>Databases, Factual</subject><subject>developmental dyslexia</subject><subject>Dyslexia - diagnostic imaging</subject><subject>Dyslexia - pathology</subject><subject>Female</subject><subject>France</subject><subject>Functional Laterality</subject><subject>Germany</subject><subject>grey matter</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Neurons and Cognition</subject><subject>Poland</subject><subject>reading impairment</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktuFDEQhi1EREJgwQWQJTaw6MTvxwYpRJCJNBEbWFvV3Z60I3e76cfA7HKEnJGT4JlJIsiKlctVX_0uVxVCbyg5oYSw06ZsTxgXTD1DR5RYXRBq-fOtrWRhhaaH6OU43hBCqST0BTpkWlOWM49QeTXHKfy-vethgNZPfsAtVE3oPI4ehi501xj6fkjZiaeEp8bjzs_53sGU2lBBxCWMYcRphWu_9jH1re-m7K43Y_S_ArxCByuIo399fx6j718-fztfFMuvF5fnZ8uiElqpgoExQgsobclhpUhtCfNQwYpCXdpKcl7z2htNREkZNYyVmgmpa0mVsBQsP0Yf97r9XLa-rnIVA0TXD6GFYeMSBPdvpAuNu05rp4zK7TBZ4MNeoHmStjhbuq2PUEGIlHZNM_v-_rEh_Zj9OLk2jJWPETqf5tFRowxnRkrxHyiXXAmtVUbfPUFv0jx0uWuZksrs5papt39_9LHUh6lm4HQP_AzRbx7jlLjturi8Lm63Lm7x6Wpn8D-JTrLM</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Płoński, Piotr</creator><creator>Gradkowski, Wojciech</creator><creator>Altarelli, Irene</creator><creator>Monzalvo, Karla</creator><creator>van Ermingen‐Marbach, Muna</creator><creator>Grande, Marion</creator><creator>Heim, Stefan</creator><creator>Marchewka, Artur</creator><creator>Bogorodzki, Piotr</creator><creator>Ramus, Franck</creator><creator>Jednoróg, Katarzyna</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1982-3299</orcidid><orcidid>https://orcid.org/0000-0002-1122-5913</orcidid></search><sort><creationdate>201702</creationdate><title>Multi‐parameter machine learning approach to the neuroanatomical basis of developmental dyslexia</title><author>Płoński, Piotr ; Gradkowski, Wojciech ; Altarelli, Irene ; Monzalvo, Karla ; van Ermingen‐Marbach, Muna ; Grande, Marion ; Heim, Stefan ; Marchewka, Artur ; Bogorodzki, Piotr ; Ramus, Franck ; Jednoróg, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4766-2a88474ab9b3af60d902eacaf1adb9c533d3de8704b121822b72457d516491a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Algorithms</topic><topic>Area Under Curve</topic><topic>brain anatomy</topic><topic>Brain Mapping</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cerebral Cortex - pathology</topic><topic>Child</topic><topic>Cognitive Sciences</topic><topic>Databases, Factual</topic><topic>developmental dyslexia</topic><topic>Dyslexia - diagnostic imaging</topic><topic>Dyslexia - pathology</topic><topic>Female</topic><topic>France</topic><topic>Functional Laterality</topic><topic>Germany</topic><topic>grey matter</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Neurons and Cognition</topic><topic>Poland</topic><topic>reading impairment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Płoński, Piotr</creatorcontrib><creatorcontrib>Gradkowski, Wojciech</creatorcontrib><creatorcontrib>Altarelli, Irene</creatorcontrib><creatorcontrib>Monzalvo, Karla</creatorcontrib><creatorcontrib>van Ermingen‐Marbach, Muna</creatorcontrib><creatorcontrib>Grande, Marion</creatorcontrib><creatorcontrib>Heim, Stefan</creatorcontrib><creatorcontrib>Marchewka, Artur</creatorcontrib><creatorcontrib>Bogorodzki, Piotr</creatorcontrib><creatorcontrib>Ramus, Franck</creatorcontrib><creatorcontrib>Jednoróg, Katarzyna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Płoński, Piotr</au><au>Gradkowski, Wojciech</au><au>Altarelli, Irene</au><au>Monzalvo, Karla</au><au>van Ermingen‐Marbach, Muna</au><au>Grande, Marion</au><au>Heim, Stefan</au><au>Marchewka, Artur</au><au>Bogorodzki, Piotr</au><au>Ramus, Franck</au><au>Jednoróg, Katarzyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐parameter machine learning approach to the neuroanatomical basis of developmental dyslexia</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2017-02</date><risdate>2017</risdate><volume>38</volume><issue>2</issue><spage>900</spage><epage>908</epage><pages>900-908</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Despite decades of research, the anatomical abnormalities associated with developmental dyslexia are still not fully described. Studies have focused on between‐group comparisons in which different neuroanatomical measures were generally explored in isolation, disregarding potential interactions between regions and measures. Here, for the first time a multivariate classification approach was used to investigate grey matter disruptions in children with dyslexia in a large (N = 236) multisite sample. A variety of cortical morphological features, including volumetric (volume, thickness and area) and geometric (folding index and mean curvature) measures were taken into account and generalizability of classification was assessed with both 10‐fold and leave‐one‐out cross validation (LOOCV) techniques. Classification into control vs. dyslexic subjects achieved above chance accuracy (AUC = 0.66 and ACC = 0.65 in the case of 10‐fold CV, and AUC = 0.65 and ACC = 0.64 using LOOCV) after principled feature selection. Features that discriminated between dyslexic and control children were exclusively situated in the left hemisphere including superior and middle temporal gyri, subparietal sulcus and prefrontal areas. They were related to geometric properties of the cortex, with generally higher mean curvature and a greater folding index characterizing the dyslexic group. Our results support the hypothesis that an atypical curvature pattern with extra folds in left hemispheric perisylvian regions characterizes dyslexia. Hum Brain Mapp 38:900–908, 2017. © 2016 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>27712002</pmid><doi>10.1002/hbm.23426</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1982-3299</orcidid><orcidid>https://orcid.org/0000-0002-1122-5913</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2017-02, Vol.38 (2), p.900-908 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6867128 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adolescent Algorithms Area Under Curve brain anatomy Brain Mapping Cerebral Cortex - diagnostic imaging Cerebral Cortex - pathology Child Cognitive Sciences Databases, Factual developmental dyslexia Dyslexia - diagnostic imaging Dyslexia - pathology Female France Functional Laterality Germany grey matter Humans Life Sciences Machine Learning Magnetic Resonance Imaging Male Neurons and Cognition Poland reading impairment |
title | Multi‐parameter machine learning approach to the neuroanatomical basis of developmental dyslexia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90parameter%20machine%20learning%20approach%20to%20the%20neuroanatomical%20basis%20of%20developmental%20dyslexia&rft.jtitle=Human%20brain%20mapping&rft.au=P%C5%82o%C5%84ski,%20Piotr&rft.date=2017-02&rft.volume=38&rft.issue=2&rft.spage=900&rft.epage=908&rft.pages=900-908&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.23426&rft_dat=%3Cproquest_pubme%3E1835364776%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856827712&rft_id=info:pmid/27712002&rfr_iscdi=true |