Dynamic functional connectivity and individual differences in emotions during social stress

Exposure to acute stress induces multiple emotional responses, each with their own unique temporal dynamics. Dynamic functional connectivity (dFC) measures the temporal variability of network synchrony and captures individual differences in network neurodynamics. This study investigated the relation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2017-12, Vol.38 (12), p.6185-6205
Hauptverfasser: Tobia, Michael J., Hayashi, Koby, Ballard, Grey, Gotlib, Ian H., Waugh, Christian E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6205
container_issue 12
container_start_page 6185
container_title Human brain mapping
container_volume 38
creator Tobia, Michael J.
Hayashi, Koby
Ballard, Grey
Gotlib, Ian H.
Waugh, Christian E.
description Exposure to acute stress induces multiple emotional responses, each with their own unique temporal dynamics. Dynamic functional connectivity (dFC) measures the temporal variability of network synchrony and captures individual differences in network neurodynamics. This study investigated the relationship between dFC and individual differences in emotions induced by an acute psychosocial stressor. Sixteen healthy adult women underwent fMRI scanning during a social evaluative threat (SET) task, and retrospectively completed questionnaires that assessed individual differences in subjectively experienced positive and negative emotions about stress and stress relief during the task. Group dFC was decomposed with parallel factor analysis (PARAFAC) into 10 components, each with a temporal signature, spatial network of functionally connected regions, and vector of participant loadings that captures individual differences in dFC. Participant loadings of two networks were positively correlated with stress‐related emotions, indicating the existence of networks for positive and negative emotions. The emotion‐related networks involved the ventromedial prefrontal cortex, cingulate cortex, anterior insula, and amygdala, among other distributed brain regions, and time signatures for these emotion‐related networks were uncorrelated. These findings demonstrate that individual differences in stress‐induced positive and negative emotions are each uniquely associated with large‐scale brain networks, and suggest that dFC is a mechanism that generates individual differences in the emotional components of the stress response. Hum Brain Mapp 38:6185–6205, 2017. © 2017 Wiley Periodicals, Inc.
doi_str_mv 10.1002/hbm.23821
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961357483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4431-70b9da257b33ef83b082de889b042c1700e595a3041d60d0ed2b748adb52e70c3</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EoqWw4AVQJDawSDv-S-wNEhRokVqxgRULy7EnravELnZSdN8eX26pClJX4_F8c3Q0h5CXFA4pADu6HOZDxhWjj8g-Bd23QDV_vH13stWip3vkWSlXAJRKoE_JHlNagJJ6n_z4uIl2Dq4Z1-iWkKKdGpdixNrchGXT2OibEH1t_FpnPowjZowOS_1ucE7bpdL4NYd40ZTkQqXKkrGU5-TJaKeCL27rAfn--dO349P27OvJl-P3Z60TgtO2h0F7y2Q_cI6j4gMo5lEpPYBgjvYAKLW0HAT1HXhAz4ZeKOsHybAHxw_Iu53u9TrM6B3GJdvJXOcw27wxyQbz7ySGS3ORbkynuk4JWQXe3Ark9HPFspg5FIfTZCOmtRiqBesZr1er6Ov_0Ku05nq1LdVRLqszXqm3O8rlVErG8c4MBbONzNTIzJ_IKvvqvvs78m9GFTjaAb_ChJuHlczph_Od5G-H0aG3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961357483</pqid></control><display><type>article</type><title>Dynamic functional connectivity and individual differences in emotions during social stress</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Tobia, Michael J. ; Hayashi, Koby ; Ballard, Grey ; Gotlib, Ian H. ; Waugh, Christian E.</creator><creatorcontrib>Tobia, Michael J. ; Hayashi, Koby ; Ballard, Grey ; Gotlib, Ian H. ; Waugh, Christian E.</creatorcontrib><description>Exposure to acute stress induces multiple emotional responses, each with their own unique temporal dynamics. Dynamic functional connectivity (dFC) measures the temporal variability of network synchrony and captures individual differences in network neurodynamics. This study investigated the relationship between dFC and individual differences in emotions induced by an acute psychosocial stressor. Sixteen healthy adult women underwent fMRI scanning during a social evaluative threat (SET) task, and retrospectively completed questionnaires that assessed individual differences in subjectively experienced positive and negative emotions about stress and stress relief during the task. Group dFC was decomposed with parallel factor analysis (PARAFAC) into 10 components, each with a temporal signature, spatial network of functionally connected regions, and vector of participant loadings that captures individual differences in dFC. Participant loadings of two networks were positively correlated with stress‐related emotions, indicating the existence of networks for positive and negative emotions. The emotion‐related networks involved the ventromedial prefrontal cortex, cingulate cortex, anterior insula, and amygdala, among other distributed brain regions, and time signatures for these emotion‐related networks were uncorrelated. These findings demonstrate that individual differences in stress‐induced positive and negative emotions are each uniquely associated with large‐scale brain networks, and suggest that dFC is a mechanism that generates individual differences in the emotional components of the stress response. Hum Brain Mapp 38:6185–6205, 2017. © 2017 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.23821</identifier><identifier>PMID: 28940859</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Adult ; Amygdala ; Brain ; Brain - diagnostic imaging ; Brain - physiopathology ; Brain Mapping ; Cortex (cingulate) ; Cortex (temporal) ; Emotions ; Emotions - physiology ; Factor analysis ; Factor Analysis, Statistical ; Female ; functional connectivity ; Functional magnetic resonance imaging ; Humans ; Individuality ; Judgment ; Magnetic Resonance Imaging ; Middle Aged ; negative affect ; Networks ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - physiopathology ; Neuropsychological Tests ; positive affect ; Prefrontal cortex ; Self Report ; Social interactions ; Social Perception ; Spatial distribution ; Speech - physiology ; Stress ; Stress, Psychological - physiopathology ; Stresses ; synchronization ; temporal dynamics ; tensor factorization ; ventral PFC</subject><ispartof>Human brain mapping, 2017-12, Vol.38 (12), p.6185-6205</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4431-70b9da257b33ef83b082de889b042c1700e595a3041d60d0ed2b748adb52e70c3</citedby><cites>FETCH-LOGICAL-c4431-70b9da257b33ef83b082de889b042c1700e595a3041d60d0ed2b748adb52e70c3</cites><orcidid>0000-0001-9525-9194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866845/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866845/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,27923,27924,45573,45574,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28940859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tobia, Michael J.</creatorcontrib><creatorcontrib>Hayashi, Koby</creatorcontrib><creatorcontrib>Ballard, Grey</creatorcontrib><creatorcontrib>Gotlib, Ian H.</creatorcontrib><creatorcontrib>Waugh, Christian E.</creatorcontrib><title>Dynamic functional connectivity and individual differences in emotions during social stress</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Exposure to acute stress induces multiple emotional responses, each with their own unique temporal dynamics. Dynamic functional connectivity (dFC) measures the temporal variability of network synchrony and captures individual differences in network neurodynamics. This study investigated the relationship between dFC and individual differences in emotions induced by an acute psychosocial stressor. Sixteen healthy adult women underwent fMRI scanning during a social evaluative threat (SET) task, and retrospectively completed questionnaires that assessed individual differences in subjectively experienced positive and negative emotions about stress and stress relief during the task. Group dFC was decomposed with parallel factor analysis (PARAFAC) into 10 components, each with a temporal signature, spatial network of functionally connected regions, and vector of participant loadings that captures individual differences in dFC. Participant loadings of two networks were positively correlated with stress‐related emotions, indicating the existence of networks for positive and negative emotions. The emotion‐related networks involved the ventromedial prefrontal cortex, cingulate cortex, anterior insula, and amygdala, among other distributed brain regions, and time signatures for these emotion‐related networks were uncorrelated. These findings demonstrate that individual differences in stress‐induced positive and negative emotions are each uniquely associated with large‐scale brain networks, and suggest that dFC is a mechanism that generates individual differences in the emotional components of the stress response. Hum Brain Mapp 38:6185–6205, 2017. © 2017 Wiley Periodicals, Inc.</description><subject>Adult</subject><subject>Amygdala</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiopathology</subject><subject>Brain Mapping</subject><subject>Cortex (cingulate)</subject><subject>Cortex (temporal)</subject><subject>Emotions</subject><subject>Emotions - physiology</subject><subject>Factor analysis</subject><subject>Factor Analysis, Statistical</subject><subject>Female</subject><subject>functional connectivity</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Individuality</subject><subject>Judgment</subject><subject>Magnetic Resonance Imaging</subject><subject>Middle Aged</subject><subject>negative affect</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - physiopathology</subject><subject>Neuropsychological Tests</subject><subject>positive affect</subject><subject>Prefrontal cortex</subject><subject>Self Report</subject><subject>Social interactions</subject><subject>Social Perception</subject><subject>Spatial distribution</subject><subject>Speech - physiology</subject><subject>Stress</subject><subject>Stress, Psychological - physiopathology</subject><subject>Stresses</subject><subject>synchronization</subject><subject>temporal dynamics</subject><subject>tensor factorization</subject><subject>ventral PFC</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1TAQhS0EoqWw4AVQJDawSDv-S-wNEhRokVqxgRULy7EnravELnZSdN8eX26pClJX4_F8c3Q0h5CXFA4pADu6HOZDxhWjj8g-Bd23QDV_vH13stWip3vkWSlXAJRKoE_JHlNagJJ6n_z4uIl2Dq4Z1-iWkKKdGpdixNrchGXT2OibEH1t_FpnPowjZowOS_1ucE7bpdL4NYd40ZTkQqXKkrGU5-TJaKeCL27rAfn--dO349P27OvJl-P3Z60TgtO2h0F7y2Q_cI6j4gMo5lEpPYBgjvYAKLW0HAT1HXhAz4ZeKOsHybAHxw_Iu53u9TrM6B3GJdvJXOcw27wxyQbz7ySGS3ORbkynuk4JWQXe3Ark9HPFspg5FIfTZCOmtRiqBesZr1er6Ov_0Ku05nq1LdVRLqszXqm3O8rlVErG8c4MBbONzNTIzJ_IKvvqvvs78m9GFTjaAb_ChJuHlczph_Od5G-H0aG3</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Tobia, Michael J.</creator><creator>Hayashi, Koby</creator><creator>Ballard, Grey</creator><creator>Gotlib, Ian H.</creator><creator>Waugh, Christian E.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9525-9194</orcidid></search><sort><creationdate>201712</creationdate><title>Dynamic functional connectivity and individual differences in emotions during social stress</title><author>Tobia, Michael J. ; Hayashi, Koby ; Ballard, Grey ; Gotlib, Ian H. ; Waugh, Christian E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4431-70b9da257b33ef83b082de889b042c1700e595a3041d60d0ed2b748adb52e70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Amygdala</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiopathology</topic><topic>Brain Mapping</topic><topic>Cortex (cingulate)</topic><topic>Cortex (temporal)</topic><topic>Emotions</topic><topic>Emotions - physiology</topic><topic>Factor analysis</topic><topic>Factor Analysis, Statistical</topic><topic>Female</topic><topic>functional connectivity</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Individuality</topic><topic>Judgment</topic><topic>Magnetic Resonance Imaging</topic><topic>Middle Aged</topic><topic>negative affect</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - physiopathology</topic><topic>Neuropsychological Tests</topic><topic>positive affect</topic><topic>Prefrontal cortex</topic><topic>Self Report</topic><topic>Social interactions</topic><topic>Social Perception</topic><topic>Spatial distribution</topic><topic>Speech - physiology</topic><topic>Stress</topic><topic>Stress, Psychological - physiopathology</topic><topic>Stresses</topic><topic>synchronization</topic><topic>temporal dynamics</topic><topic>tensor factorization</topic><topic>ventral PFC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tobia, Michael J.</creatorcontrib><creatorcontrib>Hayashi, Koby</creatorcontrib><creatorcontrib>Ballard, Grey</creatorcontrib><creatorcontrib>Gotlib, Ian H.</creatorcontrib><creatorcontrib>Waugh, Christian E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tobia, Michael J.</au><au>Hayashi, Koby</au><au>Ballard, Grey</au><au>Gotlib, Ian H.</au><au>Waugh, Christian E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic functional connectivity and individual differences in emotions during social stress</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2017-12</date><risdate>2017</risdate><volume>38</volume><issue>12</issue><spage>6185</spage><epage>6205</epage><pages>6185-6205</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Exposure to acute stress induces multiple emotional responses, each with their own unique temporal dynamics. Dynamic functional connectivity (dFC) measures the temporal variability of network synchrony and captures individual differences in network neurodynamics. This study investigated the relationship between dFC and individual differences in emotions induced by an acute psychosocial stressor. Sixteen healthy adult women underwent fMRI scanning during a social evaluative threat (SET) task, and retrospectively completed questionnaires that assessed individual differences in subjectively experienced positive and negative emotions about stress and stress relief during the task. Group dFC was decomposed with parallel factor analysis (PARAFAC) into 10 components, each with a temporal signature, spatial network of functionally connected regions, and vector of participant loadings that captures individual differences in dFC. Participant loadings of two networks were positively correlated with stress‐related emotions, indicating the existence of networks for positive and negative emotions. The emotion‐related networks involved the ventromedial prefrontal cortex, cingulate cortex, anterior insula, and amygdala, among other distributed brain regions, and time signatures for these emotion‐related networks were uncorrelated. These findings demonstrate that individual differences in stress‐induced positive and negative emotions are each uniquely associated with large‐scale brain networks, and suggest that dFC is a mechanism that generates individual differences in the emotional components of the stress response. Hum Brain Mapp 38:6185–6205, 2017. © 2017 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>28940859</pmid><doi>10.1002/hbm.23821</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9525-9194</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2017-12, Vol.38 (12), p.6185-6205
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866845
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library All Journals; PubMed Central
subjects Adult
Amygdala
Brain
Brain - diagnostic imaging
Brain - physiopathology
Brain Mapping
Cortex (cingulate)
Cortex (temporal)
Emotions
Emotions - physiology
Factor analysis
Factor Analysis, Statistical
Female
functional connectivity
Functional magnetic resonance imaging
Humans
Individuality
Judgment
Magnetic Resonance Imaging
Middle Aged
negative affect
Networks
Neural networks
Neural Pathways - diagnostic imaging
Neural Pathways - physiopathology
Neuropsychological Tests
positive affect
Prefrontal cortex
Self Report
Social interactions
Social Perception
Spatial distribution
Speech - physiology
Stress
Stress, Psychological - physiopathology
Stresses
synchronization
temporal dynamics
tensor factorization
ventral PFC
title Dynamic functional connectivity and individual differences in emotions during social stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20functional%20connectivity%20and%20individual%20differences%20in%20emotions%20during%20social%20stress&rft.jtitle=Human%20brain%20mapping&rft.au=Tobia,%20Michael%20J.&rft.date=2017-12&rft.volume=38&rft.issue=12&rft.spage=6185&rft.epage=6205&rft.pages=6185-6205&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.23821&rft_dat=%3Cproquest_pubme%3E1961357483%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961357483&rft_id=info:pmid/28940859&rfr_iscdi=true