An empirical evaluation of multivariate lesion behaviour mapping using support vector regression
Multivariate lesion behaviour mapping based on machine learning algorithms has recently been suggested to complement the methods of anatomo‐behavioural approaches in cognitive neuroscience. Several studies applied and validated support vector regression‐based lesion symptom mapping (SVR‐LSM) to map...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2019-04, Vol.40 (5), p.1381-1390 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1390 |
---|---|
container_issue | 5 |
container_start_page | 1381 |
container_title | Human brain mapping |
container_volume | 40 |
creator | Sperber, Christoph Wiesen, Daniel Karnath, Hans‐Otto |
description | Multivariate lesion behaviour mapping based on machine learning algorithms has recently been suggested to complement the methods of anatomo‐behavioural approaches in cognitive neuroscience. Several studies applied and validated support vector regression‐based lesion symptom mapping (SVR‐LSM) to map anatomo‐behavioural relations. However, this promising method, as well as the multivariate approach per se, still bears many open questions. By using large lesion samples in three simulation experiments, the present study empirically tested the validity of several methodological aspects. We found that (i) correction for multiple comparisons is required in the current implementation of SVR‐LSM, (ii) that sample sizes of at least 100–120 subjects are required to optimally model voxel‐wise lesion location in SVR‐LSM, and (iii) that SVR‐LSM is susceptible to misplacement of statistical topographies along the brain's vasculature to a similar extent as mass‐univariate analyses. |
doi_str_mv | 10.1002/hbm.24476 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186982839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4436-71388f0ec6ccfbe2e365a964bf3b3d5f87055d909a1400d8adbf2c29e9c26d193</originalsourceid><addsrcrecordid>eNp1kV9P3SAYh8mimX-2i30BQ-KNXlShBQo3S45mmyYab7ZrRunbczC0VGi7-O3XepzRJd4AgYeH9-WH0BdKzigh-fmmas9yxkrxAe1TosqMUFXsLGvBM8VKuocOUronhFJO6Ee0VxDOFOVsH_1edRja3kVnjccwGT-awYUOhwa3ox_cZKIzA2APadmuYGMmF8aIW9P3rlvjMS1jGvs-xAFPYIcQcYR1hLTc-IR2G-MTfH6eD9Gv799-Xl5lN3c_ri9XN5llrBBZSQspGwJWWNtUkEMhuFGCVU1RFTVvZEk4rxVRhjJCamnqqsltrkDZXNRzu4fo69bbj1ULtYVuiMbrPrrWxEcdjNNvTzq30eswaSEFF1TOgpNnQQwPI6RBty5Z8N50EMakc8pLwVlJlreO_0Pv5x_p5vZmSgolc1ks1OmWsjGkFKF5KYYSveSm59z0U24ze_S6-hfyX1AzcL4F_jgPj--b9NXF7Vb5F2i8pJI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186982839</pqid></control><display><type>article</type><title>An empirical evaluation of multivariate lesion behaviour mapping using support vector regression</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Sperber, Christoph ; Wiesen, Daniel ; Karnath, Hans‐Otto</creator><creatorcontrib>Sperber, Christoph ; Wiesen, Daniel ; Karnath, Hans‐Otto</creatorcontrib><description>Multivariate lesion behaviour mapping based on machine learning algorithms has recently been suggested to complement the methods of anatomo‐behavioural approaches in cognitive neuroscience. Several studies applied and validated support vector regression‐based lesion symptom mapping (SVR‐LSM) to map anatomo‐behavioural relations. However, this promising method, as well as the multivariate approach per se, still bears many open questions. By using large lesion samples in three simulation experiments, the present study empirically tested the validity of several methodological aspects. We found that (i) correction for multiple comparisons is required in the current implementation of SVR‐LSM, (ii) that sample sizes of at least 100–120 subjects are required to optimally model voxel‐wise lesion location in SVR‐LSM, and (iii) that SVR‐LSM is susceptible to misplacement of statistical topographies along the brain's vasculature to a similar extent as mass‐univariate analyses.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24476</identifier><identifier>PMID: 30549154</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Behavior ; Bias ; Brain ; Brain Diseases - pathology ; Brain Diseases - psychology ; Brain Mapping - methods ; Cerebrovascular Circulation ; Cognitive ability ; Computer simulation ; Empirical analysis ; Humans ; Image Processing, Computer-Assisted ; Learning algorithms ; Machine learning ; Magnetic Resonance Imaging ; Mapping ; Models, Neurological ; Multivariate analysis ; Nervous system ; Regression analysis ; Statistical analysis ; Statistical methods ; Stroke - pathology ; Stroke - psychology ; Support Vector Machine ; Support vector machines ; support vector regression ; SVR‐LSM ; VLSM ; voxel‐based lesion behaviour mapping ; voxel‐based lesion symptom mapping</subject><ispartof>Human brain mapping, 2019-04, Vol.40 (5), p.1381-1390</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4436-71388f0ec6ccfbe2e365a964bf3b3d5f87055d909a1400d8adbf2c29e9c26d193</citedby><cites>FETCH-LOGICAL-c4436-71388f0ec6ccfbe2e365a964bf3b3d5f87055d909a1400d8adbf2c29e9c26d193</cites><orcidid>0000-0001-6493-6543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865618/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865618/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30549154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sperber, Christoph</creatorcontrib><creatorcontrib>Wiesen, Daniel</creatorcontrib><creatorcontrib>Karnath, Hans‐Otto</creatorcontrib><title>An empirical evaluation of multivariate lesion behaviour mapping using support vector regression</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Multivariate lesion behaviour mapping based on machine learning algorithms has recently been suggested to complement the methods of anatomo‐behavioural approaches in cognitive neuroscience. Several studies applied and validated support vector regression‐based lesion symptom mapping (SVR‐LSM) to map anatomo‐behavioural relations. However, this promising method, as well as the multivariate approach per se, still bears many open questions. By using large lesion samples in three simulation experiments, the present study empirically tested the validity of several methodological aspects. We found that (i) correction for multiple comparisons is required in the current implementation of SVR‐LSM, (ii) that sample sizes of at least 100–120 subjects are required to optimally model voxel‐wise lesion location in SVR‐LSM, and (iii) that SVR‐LSM is susceptible to misplacement of statistical topographies along the brain's vasculature to a similar extent as mass‐univariate analyses.</description><subject>Algorithms</subject><subject>Behavior</subject><subject>Bias</subject><subject>Brain</subject><subject>Brain Diseases - pathology</subject><subject>Brain Diseases - psychology</subject><subject>Brain Mapping - methods</subject><subject>Cerebrovascular Circulation</subject><subject>Cognitive ability</subject><subject>Computer simulation</subject><subject>Empirical analysis</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Mapping</subject><subject>Models, Neurological</subject><subject>Multivariate analysis</subject><subject>Nervous system</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stroke - pathology</subject><subject>Stroke - psychology</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>support vector regression</subject><subject>SVR‐LSM</subject><subject>VLSM</subject><subject>voxel‐based lesion behaviour mapping</subject><subject>voxel‐based lesion symptom mapping</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV9P3SAYh8mimX-2i30BQ-KNXlShBQo3S45mmyYab7ZrRunbczC0VGi7-O3XepzRJd4AgYeH9-WH0BdKzigh-fmmas9yxkrxAe1TosqMUFXsLGvBM8VKuocOUronhFJO6Ee0VxDOFOVsH_1edRja3kVnjccwGT-awYUOhwa3ox_cZKIzA2APadmuYGMmF8aIW9P3rlvjMS1jGvs-xAFPYIcQcYR1hLTc-IR2G-MTfH6eD9Gv799-Xl5lN3c_ri9XN5llrBBZSQspGwJWWNtUkEMhuFGCVU1RFTVvZEk4rxVRhjJCamnqqsltrkDZXNRzu4fo69bbj1ULtYVuiMbrPrrWxEcdjNNvTzq30eswaSEFF1TOgpNnQQwPI6RBty5Z8N50EMakc8pLwVlJlreO_0Pv5x_p5vZmSgolc1ks1OmWsjGkFKF5KYYSveSm59z0U24ze_S6-hfyX1AzcL4F_jgPj--b9NXF7Vb5F2i8pJI</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Sperber, Christoph</creator><creator>Wiesen, Daniel</creator><creator>Karnath, Hans‐Otto</creator><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6493-6543</orcidid></search><sort><creationdate>20190401</creationdate><title>An empirical evaluation of multivariate lesion behaviour mapping using support vector regression</title><author>Sperber, Christoph ; Wiesen, Daniel ; Karnath, Hans‐Otto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4436-71388f0ec6ccfbe2e365a964bf3b3d5f87055d909a1400d8adbf2c29e9c26d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Behavior</topic><topic>Bias</topic><topic>Brain</topic><topic>Brain Diseases - pathology</topic><topic>Brain Diseases - psychology</topic><topic>Brain Mapping - methods</topic><topic>Cerebrovascular Circulation</topic><topic>Cognitive ability</topic><topic>Computer simulation</topic><topic>Empirical analysis</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Mapping</topic><topic>Models, Neurological</topic><topic>Multivariate analysis</topic><topic>Nervous system</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stroke - pathology</topic><topic>Stroke - psychology</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>support vector regression</topic><topic>SVR‐LSM</topic><topic>VLSM</topic><topic>voxel‐based lesion behaviour mapping</topic><topic>voxel‐based lesion symptom mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sperber, Christoph</creatorcontrib><creatorcontrib>Wiesen, Daniel</creatorcontrib><creatorcontrib>Karnath, Hans‐Otto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sperber, Christoph</au><au>Wiesen, Daniel</au><au>Karnath, Hans‐Otto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical evaluation of multivariate lesion behaviour mapping using support vector regression</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>40</volume><issue>5</issue><spage>1381</spage><epage>1390</epage><pages>1381-1390</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Multivariate lesion behaviour mapping based on machine learning algorithms has recently been suggested to complement the methods of anatomo‐behavioural approaches in cognitive neuroscience. Several studies applied and validated support vector regression‐based lesion symptom mapping (SVR‐LSM) to map anatomo‐behavioural relations. However, this promising method, as well as the multivariate approach per se, still bears many open questions. By using large lesion samples in three simulation experiments, the present study empirically tested the validity of several methodological aspects. We found that (i) correction for multiple comparisons is required in the current implementation of SVR‐LSM, (ii) that sample sizes of at least 100–120 subjects are required to optimally model voxel‐wise lesion location in SVR‐LSM, and (iii) that SVR‐LSM is susceptible to misplacement of statistical topographies along the brain's vasculature to a similar extent as mass‐univariate analyses.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30549154</pmid><doi>10.1002/hbm.24476</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6493-6543</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2019-04, Vol.40 (5), p.1381-1390 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865618 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Algorithms Behavior Bias Brain Brain Diseases - pathology Brain Diseases - psychology Brain Mapping - methods Cerebrovascular Circulation Cognitive ability Computer simulation Empirical analysis Humans Image Processing, Computer-Assisted Learning algorithms Machine learning Magnetic Resonance Imaging Mapping Models, Neurological Multivariate analysis Nervous system Regression analysis Statistical analysis Statistical methods Stroke - pathology Stroke - psychology Support Vector Machine Support vector machines support vector regression SVR‐LSM VLSM voxel‐based lesion behaviour mapping voxel‐based lesion symptom mapping |
title | An empirical evaluation of multivariate lesion behaviour mapping using support vector regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20evaluation%20of%20multivariate%20lesion%20behaviour%20mapping%20using%20support%20vector%20regression&rft.jtitle=Human%20brain%20mapping&rft.au=Sperber,%20Christoph&rft.date=2019-04-01&rft.volume=40&rft.issue=5&rft.spage=1381&rft.epage=1390&rft.pages=1381-1390&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24476&rft_dat=%3Cproquest_pubme%3E2186982839%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186982839&rft_id=info:pmid/30549154&rfr_iscdi=true |