An empirical evaluation of multivariate lesion behaviour mapping using support vector regression

Multivariate lesion behaviour mapping based on machine learning algorithms has recently been suggested to complement the methods of anatomo‐behavioural approaches in cognitive neuroscience. Several studies applied and validated support vector regression‐based lesion symptom mapping (SVR‐LSM) to map...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2019-04, Vol.40 (5), p.1381-1390
Hauptverfasser: Sperber, Christoph, Wiesen, Daniel, Karnath, Hans‐Otto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1390
container_issue 5
container_start_page 1381
container_title Human brain mapping
container_volume 40
creator Sperber, Christoph
Wiesen, Daniel
Karnath, Hans‐Otto
description Multivariate lesion behaviour mapping based on machine learning algorithms has recently been suggested to complement the methods of anatomo‐behavioural approaches in cognitive neuroscience. Several studies applied and validated support vector regression‐based lesion symptom mapping (SVR‐LSM) to map anatomo‐behavioural relations. However, this promising method, as well as the multivariate approach per se, still bears many open questions. By using large lesion samples in three simulation experiments, the present study empirically tested the validity of several methodological aspects. We found that (i) correction for multiple comparisons is required in the current implementation of SVR‐LSM, (ii) that sample sizes of at least 100–120 subjects are required to optimally model voxel‐wise lesion location in SVR‐LSM, and (iii) that SVR‐LSM is susceptible to misplacement of statistical topographies along the brain's vasculature to a similar extent as mass‐univariate analyses.
doi_str_mv 10.1002/hbm.24476
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186982839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4436-71388f0ec6ccfbe2e365a964bf3b3d5f87055d909a1400d8adbf2c29e9c26d193</originalsourceid><addsrcrecordid>eNp1kV9P3SAYh8mimX-2i30BQ-KNXlShBQo3S45mmyYab7ZrRunbczC0VGi7-O3XepzRJd4AgYeH9-WH0BdKzigh-fmmas9yxkrxAe1TosqMUFXsLGvBM8VKuocOUronhFJO6Ee0VxDOFOVsH_1edRja3kVnjccwGT-awYUOhwa3ox_cZKIzA2APadmuYGMmF8aIW9P3rlvjMS1jGvs-xAFPYIcQcYR1hLTc-IR2G-MTfH6eD9Gv799-Xl5lN3c_ri9XN5llrBBZSQspGwJWWNtUkEMhuFGCVU1RFTVvZEk4rxVRhjJCamnqqsltrkDZXNRzu4fo69bbj1ULtYVuiMbrPrrWxEcdjNNvTzq30eswaSEFF1TOgpNnQQwPI6RBty5Z8N50EMakc8pLwVlJlreO_0Pv5x_p5vZmSgolc1ks1OmWsjGkFKF5KYYSveSm59z0U24ze_S6-hfyX1AzcL4F_jgPj--b9NXF7Vb5F2i8pJI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186982839</pqid></control><display><type>article</type><title>An empirical evaluation of multivariate lesion behaviour mapping using support vector regression</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Sperber, Christoph ; Wiesen, Daniel ; Karnath, Hans‐Otto</creator><creatorcontrib>Sperber, Christoph ; Wiesen, Daniel ; Karnath, Hans‐Otto</creatorcontrib><description>Multivariate lesion behaviour mapping based on machine learning algorithms has recently been suggested to complement the methods of anatomo‐behavioural approaches in cognitive neuroscience. Several studies applied and validated support vector regression‐based lesion symptom mapping (SVR‐LSM) to map anatomo‐behavioural relations. However, this promising method, as well as the multivariate approach per se, still bears many open questions. By using large lesion samples in three simulation experiments, the present study empirically tested the validity of several methodological aspects. We found that (i) correction for multiple comparisons is required in the current implementation of SVR‐LSM, (ii) that sample sizes of at least 100–120 subjects are required to optimally model voxel‐wise lesion location in SVR‐LSM, and (iii) that SVR‐LSM is susceptible to misplacement of statistical topographies along the brain's vasculature to a similar extent as mass‐univariate analyses.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24476</identifier><identifier>PMID: 30549154</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Behavior ; Bias ; Brain ; Brain Diseases - pathology ; Brain Diseases - psychology ; Brain Mapping - methods ; Cerebrovascular Circulation ; Cognitive ability ; Computer simulation ; Empirical analysis ; Humans ; Image Processing, Computer-Assisted ; Learning algorithms ; Machine learning ; Magnetic Resonance Imaging ; Mapping ; Models, Neurological ; Multivariate analysis ; Nervous system ; Regression analysis ; Statistical analysis ; Statistical methods ; Stroke - pathology ; Stroke - psychology ; Support Vector Machine ; Support vector machines ; support vector regression ; SVR‐LSM ; VLSM ; voxel‐based lesion behaviour mapping ; voxel‐based lesion symptom mapping</subject><ispartof>Human brain mapping, 2019-04, Vol.40 (5), p.1381-1390</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4436-71388f0ec6ccfbe2e365a964bf3b3d5f87055d909a1400d8adbf2c29e9c26d193</citedby><cites>FETCH-LOGICAL-c4436-71388f0ec6ccfbe2e365a964bf3b3d5f87055d909a1400d8adbf2c29e9c26d193</cites><orcidid>0000-0001-6493-6543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865618/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865618/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30549154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sperber, Christoph</creatorcontrib><creatorcontrib>Wiesen, Daniel</creatorcontrib><creatorcontrib>Karnath, Hans‐Otto</creatorcontrib><title>An empirical evaluation of multivariate lesion behaviour mapping using support vector regression</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Multivariate lesion behaviour mapping based on machine learning algorithms has recently been suggested to complement the methods of anatomo‐behavioural approaches in cognitive neuroscience. Several studies applied and validated support vector regression‐based lesion symptom mapping (SVR‐LSM) to map anatomo‐behavioural relations. However, this promising method, as well as the multivariate approach per se, still bears many open questions. By using large lesion samples in three simulation experiments, the present study empirically tested the validity of several methodological aspects. We found that (i) correction for multiple comparisons is required in the current implementation of SVR‐LSM, (ii) that sample sizes of at least 100–120 subjects are required to optimally model voxel‐wise lesion location in SVR‐LSM, and (iii) that SVR‐LSM is susceptible to misplacement of statistical topographies along the brain's vasculature to a similar extent as mass‐univariate analyses.</description><subject>Algorithms</subject><subject>Behavior</subject><subject>Bias</subject><subject>Brain</subject><subject>Brain Diseases - pathology</subject><subject>Brain Diseases - psychology</subject><subject>Brain Mapping - methods</subject><subject>Cerebrovascular Circulation</subject><subject>Cognitive ability</subject><subject>Computer simulation</subject><subject>Empirical analysis</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Mapping</subject><subject>Models, Neurological</subject><subject>Multivariate analysis</subject><subject>Nervous system</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stroke - pathology</subject><subject>Stroke - psychology</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>support vector regression</subject><subject>SVR‐LSM</subject><subject>VLSM</subject><subject>voxel‐based lesion behaviour mapping</subject><subject>voxel‐based lesion symptom mapping</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV9P3SAYh8mimX-2i30BQ-KNXlShBQo3S45mmyYab7ZrRunbczC0VGi7-O3XepzRJd4AgYeH9-WH0BdKzigh-fmmas9yxkrxAe1TosqMUFXsLGvBM8VKuocOUronhFJO6Ee0VxDOFOVsH_1edRja3kVnjccwGT-awYUOhwa3ox_cZKIzA2APadmuYGMmF8aIW9P3rlvjMS1jGvs-xAFPYIcQcYR1hLTc-IR2G-MTfH6eD9Gv799-Xl5lN3c_ri9XN5llrBBZSQspGwJWWNtUkEMhuFGCVU1RFTVvZEk4rxVRhjJCamnqqsltrkDZXNRzu4fo69bbj1ULtYVuiMbrPrrWxEcdjNNvTzq30eswaSEFF1TOgpNnQQwPI6RBty5Z8N50EMakc8pLwVlJlreO_0Pv5x_p5vZmSgolc1ks1OmWsjGkFKF5KYYSveSm59z0U24ze_S6-hfyX1AzcL4F_jgPj--b9NXF7Vb5F2i8pJI</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Sperber, Christoph</creator><creator>Wiesen, Daniel</creator><creator>Karnath, Hans‐Otto</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6493-6543</orcidid></search><sort><creationdate>20190401</creationdate><title>An empirical evaluation of multivariate lesion behaviour mapping using support vector regression</title><author>Sperber, Christoph ; Wiesen, Daniel ; Karnath, Hans‐Otto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4436-71388f0ec6ccfbe2e365a964bf3b3d5f87055d909a1400d8adbf2c29e9c26d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Behavior</topic><topic>Bias</topic><topic>Brain</topic><topic>Brain Diseases - pathology</topic><topic>Brain Diseases - psychology</topic><topic>Brain Mapping - methods</topic><topic>Cerebrovascular Circulation</topic><topic>Cognitive ability</topic><topic>Computer simulation</topic><topic>Empirical analysis</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Mapping</topic><topic>Models, Neurological</topic><topic>Multivariate analysis</topic><topic>Nervous system</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stroke - pathology</topic><topic>Stroke - psychology</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>support vector regression</topic><topic>SVR‐LSM</topic><topic>VLSM</topic><topic>voxel‐based lesion behaviour mapping</topic><topic>voxel‐based lesion symptom mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sperber, Christoph</creatorcontrib><creatorcontrib>Wiesen, Daniel</creatorcontrib><creatorcontrib>Karnath, Hans‐Otto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sperber, Christoph</au><au>Wiesen, Daniel</au><au>Karnath, Hans‐Otto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical evaluation of multivariate lesion behaviour mapping using support vector regression</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>40</volume><issue>5</issue><spage>1381</spage><epage>1390</epage><pages>1381-1390</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Multivariate lesion behaviour mapping based on machine learning algorithms has recently been suggested to complement the methods of anatomo‐behavioural approaches in cognitive neuroscience. Several studies applied and validated support vector regression‐based lesion symptom mapping (SVR‐LSM) to map anatomo‐behavioural relations. However, this promising method, as well as the multivariate approach per se, still bears many open questions. By using large lesion samples in three simulation experiments, the present study empirically tested the validity of several methodological aspects. We found that (i) correction for multiple comparisons is required in the current implementation of SVR‐LSM, (ii) that sample sizes of at least 100–120 subjects are required to optimally model voxel‐wise lesion location in SVR‐LSM, and (iii) that SVR‐LSM is susceptible to misplacement of statistical topographies along the brain's vasculature to a similar extent as mass‐univariate analyses.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30549154</pmid><doi>10.1002/hbm.24476</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6493-6543</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2019-04, Vol.40 (5), p.1381-1390
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865618
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Algorithms
Behavior
Bias
Brain
Brain Diseases - pathology
Brain Diseases - psychology
Brain Mapping - methods
Cerebrovascular Circulation
Cognitive ability
Computer simulation
Empirical analysis
Humans
Image Processing, Computer-Assisted
Learning algorithms
Machine learning
Magnetic Resonance Imaging
Mapping
Models, Neurological
Multivariate analysis
Nervous system
Regression analysis
Statistical analysis
Statistical methods
Stroke - pathology
Stroke - psychology
Support Vector Machine
Support vector machines
support vector regression
SVR‐LSM
VLSM
voxel‐based lesion behaviour mapping
voxel‐based lesion symptom mapping
title An empirical evaluation of multivariate lesion behaviour mapping using support vector regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20evaluation%20of%20multivariate%20lesion%20behaviour%20mapping%20using%20support%20vector%20regression&rft.jtitle=Human%20brain%20mapping&rft.au=Sperber,%20Christoph&rft.date=2019-04-01&rft.volume=40&rft.issue=5&rft.spage=1381&rft.epage=1390&rft.pages=1381-1390&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24476&rft_dat=%3Cproquest_pubme%3E2186982839%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186982839&rft_id=info:pmid/30549154&rfr_iscdi=true