Imaging functional motor connectivity in hemiparetic children with perinatal stroke
Perinatal stroke causes lifelong disability, particularly hemiparetic cerebral palsy. Arterial ischemic strokes (AIS) are large, cortical, and subcortical injuries acquired near birth due to acute occlusion of the middle cerebral artery. Periventricular venous infarctions (PVI) are smaller, subcorti...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2019-04, Vol.40 (5), p.1632-1642 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1642 |
---|---|
container_issue | 5 |
container_start_page | 1632 |
container_title | Human brain mapping |
container_volume | 40 |
creator | Saunders, Jennifer Carlson, Helen L. Cortese, Filomeno Goodyear, Bradley G. Kirton, Adam |
description | Perinatal stroke causes lifelong disability, particularly hemiparetic cerebral palsy. Arterial ischemic strokes (AIS) are large, cortical, and subcortical injuries acquired near birth due to acute occlusion of the middle cerebral artery. Periventricular venous infarctions (PVI) are smaller, subcortical strokes acquired prior to 34 weeks gestation involving injury to the periventricular white matter. Both stroke types can damage motor pathways, thus, we investigated resulting alterations in functional motor networks and probed function. We measured blood oxygen level dependent (BOLD) fluctuations at rest in 38 participants [10 arterial patients (age = 14.7 ± 4.1 years), 10 venous patients (age = 13.5 ± 3.7 years), and 18 typically developing controls (TDCs) (age = 15.3 ± 5.1 years)] and explored strength and laterality of functional connectivity in the motor network. Inclusion criteria included MRI‐confirmed, unilateral perinatal stroke, symptomatic hemiparetic cerebral palsy, and 6–19 years old at time of imaging. Seed‐based functional connectivity analyses measured temporal correlations in BOLD response over the whole brain using primary motor cortices as seeds. Laterality indices based on mean z‐scores in lesioned and nonlesioned hemispheres explored laterality. In AIS patients, significant differences in both strength and laterality of motor network connections were observed compared with TDCs. In PVI patients, motor networks largely resembled those of healthy controls, albeit slightly weaker and asymmetric, despite subcortical damage and hemiparesis. Functional connectivity strengths were not related to motor outcome scores for either stroke group. This study serves as a foundation to better understand how resting‐state fMRI can assess motor functional connectivity and potentially be applied to explore mechanisms of interventional therapies after perinatal stroke. |
doi_str_mv | 10.1002/hbm.24474 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2135128228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4434-e62ed4d64dc8ef2eb53268480e9d170b67496bbb93ba8913edafba41056342773</originalsourceid><addsrcrecordid>eNp10U9vFCEYBnBiNLZWD34BM4kXPUzLv2HgYqKN2iY1HtQzAeadHeoMrMC02W8v69ZGTTxB4MeTNzwIPSf4lGBMzya7nFLOe_4AHROs-hYTxR7u96JrFe_JEXqS8zXGhHSYPEZHDFeNJT1GXy4Xs_Fh04xrcMXHYOZmiSWmxsUQoB7d-LJrfGgmWPzWJCjeNW7y85AgNLe-TM0Wkg-m1Je5pPgdnqJHo5kzPLtbT9C3D--_nl-0V58_Xp6_vWod54y3ICgMfBB8cBJGCrZjVEguMaiB9NiKnithrVXMGqkIg8GM1nCCO8E47Xt2gt4ccrerXWBwEEoys94mv5i009F4_fdN8JPexBstpOg6pmrAq7uAFH-skItefHYwzyZAXLOmhHWESkplpS__oddxTfW39koKJVnH9-r1QbkUc04w3g9DsN5XpWtV-ldV1b74c_p7-bubCs4O4NbPsPt_kr549-kQ-RP3-J7s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186983548</pqid></control><display><type>article</type><title>Imaging functional motor connectivity in hemiparetic children with perinatal stroke</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Saunders, Jennifer ; Carlson, Helen L. ; Cortese, Filomeno ; Goodyear, Bradley G. ; Kirton, Adam</creator><creatorcontrib>Saunders, Jennifer ; Carlson, Helen L. ; Cortese, Filomeno ; Goodyear, Bradley G. ; Kirton, Adam</creatorcontrib><description>Perinatal stroke causes lifelong disability, particularly hemiparetic cerebral palsy. Arterial ischemic strokes (AIS) are large, cortical, and subcortical injuries acquired near birth due to acute occlusion of the middle cerebral artery. Periventricular venous infarctions (PVI) are smaller, subcortical strokes acquired prior to 34 weeks gestation involving injury to the periventricular white matter. Both stroke types can damage motor pathways, thus, we investigated resulting alterations in functional motor networks and probed function. We measured blood oxygen level dependent (BOLD) fluctuations at rest in 38 participants [10 arterial patients (age = 14.7 ± 4.1 years), 10 venous patients (age = 13.5 ± 3.7 years), and 18 typically developing controls (TDCs) (age = 15.3 ± 5.1 years)] and explored strength and laterality of functional connectivity in the motor network. Inclusion criteria included MRI‐confirmed, unilateral perinatal stroke, symptomatic hemiparetic cerebral palsy, and 6–19 years old at time of imaging. Seed‐based functional connectivity analyses measured temporal correlations in BOLD response over the whole brain using primary motor cortices as seeds. Laterality indices based on mean z‐scores in lesioned and nonlesioned hemispheres explored laterality. In AIS patients, significant differences in both strength and laterality of motor network connections were observed compared with TDCs. In PVI patients, motor networks largely resembled those of healthy controls, albeit slightly weaker and asymmetric, despite subcortical damage and hemiparesis. Functional connectivity strengths were not related to motor outcome scores for either stroke group. This study serves as a foundation to better understand how resting‐state fMRI can assess motor functional connectivity and potentially be applied to explore mechanisms of interventional therapies after perinatal stroke.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24474</identifier><identifier>PMID: 30447082</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Adolescent ; Age ; Brain ; Brain Infarction - diagnostic imaging ; Brain injury ; Brain mapping ; Cerebral blood flow ; Cerebral palsy ; Cerebral Palsy - diagnostic imaging ; Child ; Children ; Correlation analysis ; Cortex ; Diffusion Tensor Imaging ; Efferent Pathways - diagnostic imaging ; Female ; functional connectivity ; Functional Laterality ; Functional magnetic resonance imaging ; Gestation ; Hemispheres ; Humans ; Infant, Newborn ; Ischemia ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Motor Cortex - physiopathology ; motor networks ; Neural networks ; Neuroimaging ; Occlusion ; Paralysis ; Paresis ; Paresis - congenital ; Paresis - diagnostic imaging ; Patients ; pediatric ; perinatal stroke ; resting‐state fMRI ; Seeds ; Stroke ; Stroke - congenital ; Stroke - diagnostic imaging ; Substantia alba ; Young Adult</subject><ispartof>Human brain mapping, 2019-04, Vol.40 (5), p.1632-1642</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4434-e62ed4d64dc8ef2eb53268480e9d170b67496bbb93ba8913edafba41056342773</citedby><cites>FETCH-LOGICAL-c4434-e62ed4d64dc8ef2eb53268480e9d170b67496bbb93ba8913edafba41056342773</cites><orcidid>0000-0002-5788-0542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865539/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865539/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30447082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saunders, Jennifer</creatorcontrib><creatorcontrib>Carlson, Helen L.</creatorcontrib><creatorcontrib>Cortese, Filomeno</creatorcontrib><creatorcontrib>Goodyear, Bradley G.</creatorcontrib><creatorcontrib>Kirton, Adam</creatorcontrib><title>Imaging functional motor connectivity in hemiparetic children with perinatal stroke</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Perinatal stroke causes lifelong disability, particularly hemiparetic cerebral palsy. Arterial ischemic strokes (AIS) are large, cortical, and subcortical injuries acquired near birth due to acute occlusion of the middle cerebral artery. Periventricular venous infarctions (PVI) are smaller, subcortical strokes acquired prior to 34 weeks gestation involving injury to the periventricular white matter. Both stroke types can damage motor pathways, thus, we investigated resulting alterations in functional motor networks and probed function. We measured blood oxygen level dependent (BOLD) fluctuations at rest in 38 participants [10 arterial patients (age = 14.7 ± 4.1 years), 10 venous patients (age = 13.5 ± 3.7 years), and 18 typically developing controls (TDCs) (age = 15.3 ± 5.1 years)] and explored strength and laterality of functional connectivity in the motor network. Inclusion criteria included MRI‐confirmed, unilateral perinatal stroke, symptomatic hemiparetic cerebral palsy, and 6–19 years old at time of imaging. Seed‐based functional connectivity analyses measured temporal correlations in BOLD response over the whole brain using primary motor cortices as seeds. Laterality indices based on mean z‐scores in lesioned and nonlesioned hemispheres explored laterality. In AIS patients, significant differences in both strength and laterality of motor network connections were observed compared with TDCs. In PVI patients, motor networks largely resembled those of healthy controls, albeit slightly weaker and asymmetric, despite subcortical damage and hemiparesis. Functional connectivity strengths were not related to motor outcome scores for either stroke group. This study serves as a foundation to better understand how resting‐state fMRI can assess motor functional connectivity and potentially be applied to explore mechanisms of interventional therapies after perinatal stroke.</description><subject>Adolescent</subject><subject>Age</subject><subject>Brain</subject><subject>Brain Infarction - diagnostic imaging</subject><subject>Brain injury</subject><subject>Brain mapping</subject><subject>Cerebral blood flow</subject><subject>Cerebral palsy</subject><subject>Cerebral Palsy - diagnostic imaging</subject><subject>Child</subject><subject>Children</subject><subject>Correlation analysis</subject><subject>Cortex</subject><subject>Diffusion Tensor Imaging</subject><subject>Efferent Pathways - diagnostic imaging</subject><subject>Female</subject><subject>functional connectivity</subject><subject>Functional Laterality</subject><subject>Functional magnetic resonance imaging</subject><subject>Gestation</subject><subject>Hemispheres</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Ischemia</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Motor Cortex - physiopathology</subject><subject>motor networks</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Occlusion</subject><subject>Paralysis</subject><subject>Paresis</subject><subject>Paresis - congenital</subject><subject>Paresis - diagnostic imaging</subject><subject>Patients</subject><subject>pediatric</subject><subject>perinatal stroke</subject><subject>resting‐state fMRI</subject><subject>Seeds</subject><subject>Stroke</subject><subject>Stroke - congenital</subject><subject>Stroke - diagnostic imaging</subject><subject>Substantia alba</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10U9vFCEYBnBiNLZWD34BM4kXPUzLv2HgYqKN2iY1HtQzAeadHeoMrMC02W8v69ZGTTxB4MeTNzwIPSf4lGBMzya7nFLOe_4AHROs-hYTxR7u96JrFe_JEXqS8zXGhHSYPEZHDFeNJT1GXy4Xs_Fh04xrcMXHYOZmiSWmxsUQoB7d-LJrfGgmWPzWJCjeNW7y85AgNLe-TM0Wkg-m1Je5pPgdnqJHo5kzPLtbT9C3D--_nl-0V58_Xp6_vWod54y3ICgMfBB8cBJGCrZjVEguMaiB9NiKnithrVXMGqkIg8GM1nCCO8E47Xt2gt4ccrerXWBwEEoys94mv5i009F4_fdN8JPexBstpOg6pmrAq7uAFH-skItefHYwzyZAXLOmhHWESkplpS__oddxTfW39koKJVnH9-r1QbkUc04w3g9DsN5XpWtV-ldV1b74c_p7-bubCs4O4NbPsPt_kr549-kQ-RP3-J7s</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Saunders, Jennifer</creator><creator>Carlson, Helen L.</creator><creator>Cortese, Filomeno</creator><creator>Goodyear, Bradley G.</creator><creator>Kirton, Adam</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5788-0542</orcidid></search><sort><creationdate>20190401</creationdate><title>Imaging functional motor connectivity in hemiparetic children with perinatal stroke</title><author>Saunders, Jennifer ; Carlson, Helen L. ; Cortese, Filomeno ; Goodyear, Bradley G. ; Kirton, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4434-e62ed4d64dc8ef2eb53268480e9d170b67496bbb93ba8913edafba41056342773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Age</topic><topic>Brain</topic><topic>Brain Infarction - diagnostic imaging</topic><topic>Brain injury</topic><topic>Brain mapping</topic><topic>Cerebral blood flow</topic><topic>Cerebral palsy</topic><topic>Cerebral Palsy - diagnostic imaging</topic><topic>Child</topic><topic>Children</topic><topic>Correlation analysis</topic><topic>Cortex</topic><topic>Diffusion Tensor Imaging</topic><topic>Efferent Pathways - diagnostic imaging</topic><topic>Female</topic><topic>functional connectivity</topic><topic>Functional Laterality</topic><topic>Functional magnetic resonance imaging</topic><topic>Gestation</topic><topic>Hemispheres</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Ischemia</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Motor Cortex - physiopathology</topic><topic>motor networks</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Occlusion</topic><topic>Paralysis</topic><topic>Paresis</topic><topic>Paresis - congenital</topic><topic>Paresis - diagnostic imaging</topic><topic>Patients</topic><topic>pediatric</topic><topic>perinatal stroke</topic><topic>resting‐state fMRI</topic><topic>Seeds</topic><topic>Stroke</topic><topic>Stroke - congenital</topic><topic>Stroke - diagnostic imaging</topic><topic>Substantia alba</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saunders, Jennifer</creatorcontrib><creatorcontrib>Carlson, Helen L.</creatorcontrib><creatorcontrib>Cortese, Filomeno</creatorcontrib><creatorcontrib>Goodyear, Bradley G.</creatorcontrib><creatorcontrib>Kirton, Adam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saunders, Jennifer</au><au>Carlson, Helen L.</au><au>Cortese, Filomeno</au><au>Goodyear, Bradley G.</au><au>Kirton, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging functional motor connectivity in hemiparetic children with perinatal stroke</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>40</volume><issue>5</issue><spage>1632</spage><epage>1642</epage><pages>1632-1642</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Perinatal stroke causes lifelong disability, particularly hemiparetic cerebral palsy. Arterial ischemic strokes (AIS) are large, cortical, and subcortical injuries acquired near birth due to acute occlusion of the middle cerebral artery. Periventricular venous infarctions (PVI) are smaller, subcortical strokes acquired prior to 34 weeks gestation involving injury to the periventricular white matter. Both stroke types can damage motor pathways, thus, we investigated resulting alterations in functional motor networks and probed function. We measured blood oxygen level dependent (BOLD) fluctuations at rest in 38 participants [10 arterial patients (age = 14.7 ± 4.1 years), 10 venous patients (age = 13.5 ± 3.7 years), and 18 typically developing controls (TDCs) (age = 15.3 ± 5.1 years)] and explored strength and laterality of functional connectivity in the motor network. Inclusion criteria included MRI‐confirmed, unilateral perinatal stroke, symptomatic hemiparetic cerebral palsy, and 6–19 years old at time of imaging. Seed‐based functional connectivity analyses measured temporal correlations in BOLD response over the whole brain using primary motor cortices as seeds. Laterality indices based on mean z‐scores in lesioned and nonlesioned hemispheres explored laterality. In AIS patients, significant differences in both strength and laterality of motor network connections were observed compared with TDCs. In PVI patients, motor networks largely resembled those of healthy controls, albeit slightly weaker and asymmetric, despite subcortical damage and hemiparesis. Functional connectivity strengths were not related to motor outcome scores for either stroke group. This study serves as a foundation to better understand how resting‐state fMRI can assess motor functional connectivity and potentially be applied to explore mechanisms of interventional therapies after perinatal stroke.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>30447082</pmid><doi>10.1002/hbm.24474</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5788-0542</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2019-04, Vol.40 (5), p.1632-1642 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865539 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adolescent Age Brain Brain Infarction - diagnostic imaging Brain injury Brain mapping Cerebral blood flow Cerebral palsy Cerebral Palsy - diagnostic imaging Child Children Correlation analysis Cortex Diffusion Tensor Imaging Efferent Pathways - diagnostic imaging Female functional connectivity Functional Laterality Functional magnetic resonance imaging Gestation Hemispheres Humans Infant, Newborn Ischemia Magnetic Resonance Imaging Male Medical imaging Motor Cortex - physiopathology motor networks Neural networks Neuroimaging Occlusion Paralysis Paresis Paresis - congenital Paresis - diagnostic imaging Patients pediatric perinatal stroke resting‐state fMRI Seeds Stroke Stroke - congenital Stroke - diagnostic imaging Substantia alba Young Adult |
title | Imaging functional motor connectivity in hemiparetic children with perinatal stroke |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20functional%20motor%20connectivity%20in%20hemiparetic%20children%20with%20perinatal%20stroke&rft.jtitle=Human%20brain%20mapping&rft.au=Saunders,%20Jennifer&rft.date=2019-04-01&rft.volume=40&rft.issue=5&rft.spage=1632&rft.epage=1642&rft.pages=1632-1642&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24474&rft_dat=%3Cproquest_pubme%3E2135128228%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186983548&rft_id=info:pmid/30447082&rfr_iscdi=true |