Imaging functional motor connectivity in hemiparetic children with perinatal stroke

Perinatal stroke causes lifelong disability, particularly hemiparetic cerebral palsy. Arterial ischemic strokes (AIS) are large, cortical, and subcortical injuries acquired near birth due to acute occlusion of the middle cerebral artery. Periventricular venous infarctions (PVI) are smaller, subcorti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2019-04, Vol.40 (5), p.1632-1642
Hauptverfasser: Saunders, Jennifer, Carlson, Helen L., Cortese, Filomeno, Goodyear, Bradley G., Kirton, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1642
container_issue 5
container_start_page 1632
container_title Human brain mapping
container_volume 40
creator Saunders, Jennifer
Carlson, Helen L.
Cortese, Filomeno
Goodyear, Bradley G.
Kirton, Adam
description Perinatal stroke causes lifelong disability, particularly hemiparetic cerebral palsy. Arterial ischemic strokes (AIS) are large, cortical, and subcortical injuries acquired near birth due to acute occlusion of the middle cerebral artery. Periventricular venous infarctions (PVI) are smaller, subcortical strokes acquired prior to 34 weeks gestation involving injury to the periventricular white matter. Both stroke types can damage motor pathways, thus, we investigated resulting alterations in functional motor networks and probed function. We measured blood oxygen level dependent (BOLD) fluctuations at rest in 38 participants [10 arterial patients (age = 14.7 ± 4.1 years), 10 venous patients (age = 13.5 ± 3.7 years), and 18 typically developing controls (TDCs) (age = 15.3 ± 5.1 years)] and explored strength and laterality of functional connectivity in the motor network. Inclusion criteria included MRI‐confirmed, unilateral perinatal stroke, symptomatic hemiparetic cerebral palsy, and 6–19 years old at time of imaging. Seed‐based functional connectivity analyses measured temporal correlations in BOLD response over the whole brain using primary motor cortices as seeds. Laterality indices based on mean z‐scores in lesioned and nonlesioned hemispheres explored laterality. In AIS patients, significant differences in both strength and laterality of motor network connections were observed compared with TDCs. In PVI patients, motor networks largely resembled those of healthy controls, albeit slightly weaker and asymmetric, despite subcortical damage and hemiparesis. Functional connectivity strengths were not related to motor outcome scores for either stroke group. This study serves as a foundation to better understand how resting‐state fMRI can assess motor functional connectivity and potentially be applied to explore mechanisms of interventional therapies after perinatal stroke.
doi_str_mv 10.1002/hbm.24474
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2135128228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4434-e62ed4d64dc8ef2eb53268480e9d170b67496bbb93ba8913edafba41056342773</originalsourceid><addsrcrecordid>eNp10U9vFCEYBnBiNLZWD34BM4kXPUzLv2HgYqKN2iY1HtQzAeadHeoMrMC02W8v69ZGTTxB4MeTNzwIPSf4lGBMzya7nFLOe_4AHROs-hYTxR7u96JrFe_JEXqS8zXGhHSYPEZHDFeNJT1GXy4Xs_Fh04xrcMXHYOZmiSWmxsUQoB7d-LJrfGgmWPzWJCjeNW7y85AgNLe-TM0Wkg-m1Je5pPgdnqJHo5kzPLtbT9C3D--_nl-0V58_Xp6_vWod54y3ICgMfBB8cBJGCrZjVEguMaiB9NiKnithrVXMGqkIg8GM1nCCO8E47Xt2gt4ccrerXWBwEEoys94mv5i009F4_fdN8JPexBstpOg6pmrAq7uAFH-skItefHYwzyZAXLOmhHWESkplpS__oddxTfW39koKJVnH9-r1QbkUc04w3g9DsN5XpWtV-ldV1b74c_p7-bubCs4O4NbPsPt_kr549-kQ-RP3-J7s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186983548</pqid></control><display><type>article</type><title>Imaging functional motor connectivity in hemiparetic children with perinatal stroke</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Saunders, Jennifer ; Carlson, Helen L. ; Cortese, Filomeno ; Goodyear, Bradley G. ; Kirton, Adam</creator><creatorcontrib>Saunders, Jennifer ; Carlson, Helen L. ; Cortese, Filomeno ; Goodyear, Bradley G. ; Kirton, Adam</creatorcontrib><description>Perinatal stroke causes lifelong disability, particularly hemiparetic cerebral palsy. Arterial ischemic strokes (AIS) are large, cortical, and subcortical injuries acquired near birth due to acute occlusion of the middle cerebral artery. Periventricular venous infarctions (PVI) are smaller, subcortical strokes acquired prior to 34 weeks gestation involving injury to the periventricular white matter. Both stroke types can damage motor pathways, thus, we investigated resulting alterations in functional motor networks and probed function. We measured blood oxygen level dependent (BOLD) fluctuations at rest in 38 participants [10 arterial patients (age = 14.7 ± 4.1 years), 10 venous patients (age = 13.5 ± 3.7 years), and 18 typically developing controls (TDCs) (age = 15.3 ± 5.1 years)] and explored strength and laterality of functional connectivity in the motor network. Inclusion criteria included MRI‐confirmed, unilateral perinatal stroke, symptomatic hemiparetic cerebral palsy, and 6–19 years old at time of imaging. Seed‐based functional connectivity analyses measured temporal correlations in BOLD response over the whole brain using primary motor cortices as seeds. Laterality indices based on mean z‐scores in lesioned and nonlesioned hemispheres explored laterality. In AIS patients, significant differences in both strength and laterality of motor network connections were observed compared with TDCs. In PVI patients, motor networks largely resembled those of healthy controls, albeit slightly weaker and asymmetric, despite subcortical damage and hemiparesis. Functional connectivity strengths were not related to motor outcome scores for either stroke group. This study serves as a foundation to better understand how resting‐state fMRI can assess motor functional connectivity and potentially be applied to explore mechanisms of interventional therapies after perinatal stroke.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24474</identifier><identifier>PMID: 30447082</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Adolescent ; Age ; Brain ; Brain Infarction - diagnostic imaging ; Brain injury ; Brain mapping ; Cerebral blood flow ; Cerebral palsy ; Cerebral Palsy - diagnostic imaging ; Child ; Children ; Correlation analysis ; Cortex ; Diffusion Tensor Imaging ; Efferent Pathways - diagnostic imaging ; Female ; functional connectivity ; Functional Laterality ; Functional magnetic resonance imaging ; Gestation ; Hemispheres ; Humans ; Infant, Newborn ; Ischemia ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Motor Cortex - physiopathology ; motor networks ; Neural networks ; Neuroimaging ; Occlusion ; Paralysis ; Paresis ; Paresis - congenital ; Paresis - diagnostic imaging ; Patients ; pediatric ; perinatal stroke ; resting‐state fMRI ; Seeds ; Stroke ; Stroke - congenital ; Stroke - diagnostic imaging ; Substantia alba ; Young Adult</subject><ispartof>Human brain mapping, 2019-04, Vol.40 (5), p.1632-1642</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4434-e62ed4d64dc8ef2eb53268480e9d170b67496bbb93ba8913edafba41056342773</citedby><cites>FETCH-LOGICAL-c4434-e62ed4d64dc8ef2eb53268480e9d170b67496bbb93ba8913edafba41056342773</cites><orcidid>0000-0002-5788-0542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865539/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865539/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30447082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saunders, Jennifer</creatorcontrib><creatorcontrib>Carlson, Helen L.</creatorcontrib><creatorcontrib>Cortese, Filomeno</creatorcontrib><creatorcontrib>Goodyear, Bradley G.</creatorcontrib><creatorcontrib>Kirton, Adam</creatorcontrib><title>Imaging functional motor connectivity in hemiparetic children with perinatal stroke</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Perinatal stroke causes lifelong disability, particularly hemiparetic cerebral palsy. Arterial ischemic strokes (AIS) are large, cortical, and subcortical injuries acquired near birth due to acute occlusion of the middle cerebral artery. Periventricular venous infarctions (PVI) are smaller, subcortical strokes acquired prior to 34 weeks gestation involving injury to the periventricular white matter. Both stroke types can damage motor pathways, thus, we investigated resulting alterations in functional motor networks and probed function. We measured blood oxygen level dependent (BOLD) fluctuations at rest in 38 participants [10 arterial patients (age = 14.7 ± 4.1 years), 10 venous patients (age = 13.5 ± 3.7 years), and 18 typically developing controls (TDCs) (age = 15.3 ± 5.1 years)] and explored strength and laterality of functional connectivity in the motor network. Inclusion criteria included MRI‐confirmed, unilateral perinatal stroke, symptomatic hemiparetic cerebral palsy, and 6–19 years old at time of imaging. Seed‐based functional connectivity analyses measured temporal correlations in BOLD response over the whole brain using primary motor cortices as seeds. Laterality indices based on mean z‐scores in lesioned and nonlesioned hemispheres explored laterality. In AIS patients, significant differences in both strength and laterality of motor network connections were observed compared with TDCs. In PVI patients, motor networks largely resembled those of healthy controls, albeit slightly weaker and asymmetric, despite subcortical damage and hemiparesis. Functional connectivity strengths were not related to motor outcome scores for either stroke group. This study serves as a foundation to better understand how resting‐state fMRI can assess motor functional connectivity and potentially be applied to explore mechanisms of interventional therapies after perinatal stroke.</description><subject>Adolescent</subject><subject>Age</subject><subject>Brain</subject><subject>Brain Infarction - diagnostic imaging</subject><subject>Brain injury</subject><subject>Brain mapping</subject><subject>Cerebral blood flow</subject><subject>Cerebral palsy</subject><subject>Cerebral Palsy - diagnostic imaging</subject><subject>Child</subject><subject>Children</subject><subject>Correlation analysis</subject><subject>Cortex</subject><subject>Diffusion Tensor Imaging</subject><subject>Efferent Pathways - diagnostic imaging</subject><subject>Female</subject><subject>functional connectivity</subject><subject>Functional Laterality</subject><subject>Functional magnetic resonance imaging</subject><subject>Gestation</subject><subject>Hemispheres</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Ischemia</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Motor Cortex - physiopathology</subject><subject>motor networks</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Occlusion</subject><subject>Paralysis</subject><subject>Paresis</subject><subject>Paresis - congenital</subject><subject>Paresis - diagnostic imaging</subject><subject>Patients</subject><subject>pediatric</subject><subject>perinatal stroke</subject><subject>resting‐state fMRI</subject><subject>Seeds</subject><subject>Stroke</subject><subject>Stroke - congenital</subject><subject>Stroke - diagnostic imaging</subject><subject>Substantia alba</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10U9vFCEYBnBiNLZWD34BM4kXPUzLv2HgYqKN2iY1HtQzAeadHeoMrMC02W8v69ZGTTxB4MeTNzwIPSf4lGBMzya7nFLOe_4AHROs-hYTxR7u96JrFe_JEXqS8zXGhHSYPEZHDFeNJT1GXy4Xs_Fh04xrcMXHYOZmiSWmxsUQoB7d-LJrfGgmWPzWJCjeNW7y85AgNLe-TM0Wkg-m1Je5pPgdnqJHo5kzPLtbT9C3D--_nl-0V58_Xp6_vWod54y3ICgMfBB8cBJGCrZjVEguMaiB9NiKnithrVXMGqkIg8GM1nCCO8E47Xt2gt4ccrerXWBwEEoys94mv5i009F4_fdN8JPexBstpOg6pmrAq7uAFH-skItefHYwzyZAXLOmhHWESkplpS__oddxTfW39koKJVnH9-r1QbkUc04w3g9DsN5XpWtV-ldV1b74c_p7-bubCs4O4NbPsPt_kr549-kQ-RP3-J7s</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Saunders, Jennifer</creator><creator>Carlson, Helen L.</creator><creator>Cortese, Filomeno</creator><creator>Goodyear, Bradley G.</creator><creator>Kirton, Adam</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5788-0542</orcidid></search><sort><creationdate>20190401</creationdate><title>Imaging functional motor connectivity in hemiparetic children with perinatal stroke</title><author>Saunders, Jennifer ; Carlson, Helen L. ; Cortese, Filomeno ; Goodyear, Bradley G. ; Kirton, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4434-e62ed4d64dc8ef2eb53268480e9d170b67496bbb93ba8913edafba41056342773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Age</topic><topic>Brain</topic><topic>Brain Infarction - diagnostic imaging</topic><topic>Brain injury</topic><topic>Brain mapping</topic><topic>Cerebral blood flow</topic><topic>Cerebral palsy</topic><topic>Cerebral Palsy - diagnostic imaging</topic><topic>Child</topic><topic>Children</topic><topic>Correlation analysis</topic><topic>Cortex</topic><topic>Diffusion Tensor Imaging</topic><topic>Efferent Pathways - diagnostic imaging</topic><topic>Female</topic><topic>functional connectivity</topic><topic>Functional Laterality</topic><topic>Functional magnetic resonance imaging</topic><topic>Gestation</topic><topic>Hemispheres</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Ischemia</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Motor Cortex - physiopathology</topic><topic>motor networks</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Occlusion</topic><topic>Paralysis</topic><topic>Paresis</topic><topic>Paresis - congenital</topic><topic>Paresis - diagnostic imaging</topic><topic>Patients</topic><topic>pediatric</topic><topic>perinatal stroke</topic><topic>resting‐state fMRI</topic><topic>Seeds</topic><topic>Stroke</topic><topic>Stroke - congenital</topic><topic>Stroke - diagnostic imaging</topic><topic>Substantia alba</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saunders, Jennifer</creatorcontrib><creatorcontrib>Carlson, Helen L.</creatorcontrib><creatorcontrib>Cortese, Filomeno</creatorcontrib><creatorcontrib>Goodyear, Bradley G.</creatorcontrib><creatorcontrib>Kirton, Adam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saunders, Jennifer</au><au>Carlson, Helen L.</au><au>Cortese, Filomeno</au><au>Goodyear, Bradley G.</au><au>Kirton, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging functional motor connectivity in hemiparetic children with perinatal stroke</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>40</volume><issue>5</issue><spage>1632</spage><epage>1642</epage><pages>1632-1642</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Perinatal stroke causes lifelong disability, particularly hemiparetic cerebral palsy. Arterial ischemic strokes (AIS) are large, cortical, and subcortical injuries acquired near birth due to acute occlusion of the middle cerebral artery. Periventricular venous infarctions (PVI) are smaller, subcortical strokes acquired prior to 34 weeks gestation involving injury to the periventricular white matter. Both stroke types can damage motor pathways, thus, we investigated resulting alterations in functional motor networks and probed function. We measured blood oxygen level dependent (BOLD) fluctuations at rest in 38 participants [10 arterial patients (age = 14.7 ± 4.1 years), 10 venous patients (age = 13.5 ± 3.7 years), and 18 typically developing controls (TDCs) (age = 15.3 ± 5.1 years)] and explored strength and laterality of functional connectivity in the motor network. Inclusion criteria included MRI‐confirmed, unilateral perinatal stroke, symptomatic hemiparetic cerebral palsy, and 6–19 years old at time of imaging. Seed‐based functional connectivity analyses measured temporal correlations in BOLD response over the whole brain using primary motor cortices as seeds. Laterality indices based on mean z‐scores in lesioned and nonlesioned hemispheres explored laterality. In AIS patients, significant differences in both strength and laterality of motor network connections were observed compared with TDCs. In PVI patients, motor networks largely resembled those of healthy controls, albeit slightly weaker and asymmetric, despite subcortical damage and hemiparesis. Functional connectivity strengths were not related to motor outcome scores for either stroke group. This study serves as a foundation to better understand how resting‐state fMRI can assess motor functional connectivity and potentially be applied to explore mechanisms of interventional therapies after perinatal stroke.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30447082</pmid><doi>10.1002/hbm.24474</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5788-0542</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2019-04, Vol.40 (5), p.1632-1642
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865539
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adolescent
Age
Brain
Brain Infarction - diagnostic imaging
Brain injury
Brain mapping
Cerebral blood flow
Cerebral palsy
Cerebral Palsy - diagnostic imaging
Child
Children
Correlation analysis
Cortex
Diffusion Tensor Imaging
Efferent Pathways - diagnostic imaging
Female
functional connectivity
Functional Laterality
Functional magnetic resonance imaging
Gestation
Hemispheres
Humans
Infant, Newborn
Ischemia
Magnetic Resonance Imaging
Male
Medical imaging
Motor Cortex - physiopathology
motor networks
Neural networks
Neuroimaging
Occlusion
Paralysis
Paresis
Paresis - congenital
Paresis - diagnostic imaging
Patients
pediatric
perinatal stroke
resting‐state fMRI
Seeds
Stroke
Stroke - congenital
Stroke - diagnostic imaging
Substantia alba
Young Adult
title Imaging functional motor connectivity in hemiparetic children with perinatal stroke
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20functional%20motor%20connectivity%20in%20hemiparetic%20children%20with%20perinatal%20stroke&rft.jtitle=Human%20brain%20mapping&rft.au=Saunders,%20Jennifer&rft.date=2019-04-01&rft.volume=40&rft.issue=5&rft.spage=1632&rft.epage=1642&rft.pages=1632-1642&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24474&rft_dat=%3Cproquest_pubme%3E2135128228%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186983548&rft_id=info:pmid/30447082&rfr_iscdi=true