MR‐based age‐related effects on the striatum, globus pallidus, and thalamus in healthy individuals across the adult lifespan

While numerous studies have used magnetic resonance imaging (MRI) to elucidate normative age‐related trajectories in subcortical structures across the human lifespan, there exists substantial heterogeneity among different studies. Here, we investigated the normative relationships between age and mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2019-12, Vol.40 (18), p.5269-5288
Hauptverfasser: Tullo, Stephanie, Patel, Raihaan, Devenyi, Gabriel A., Salaciak, Alyssa, Bedford, Saashi A., Farzin, Sarah, Wlodarski, Nancy, Tardif, Christine L., Breitner, John C. S., Chakravarty, M. Mallar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5288
container_issue 18
container_start_page 5269
container_title Human brain mapping
container_volume 40
creator Tullo, Stephanie
Patel, Raihaan
Devenyi, Gabriel A.
Salaciak, Alyssa
Bedford, Saashi A.
Farzin, Sarah
Wlodarski, Nancy
Tardif, Christine L.
Breitner, John C. S.
Chakravarty, M. Mallar
description While numerous studies have used magnetic resonance imaging (MRI) to elucidate normative age‐related trajectories in subcortical structures across the human lifespan, there exists substantial heterogeneity among different studies. Here, we investigated the normative relationships between age and morphology (i.e., volume and shape), and microstructure (using the T1‐weighted/T2‐weighted [T1w/T2w] signal ratio as a putative index of myelin and microstructure) of the striatum, globus pallidus, and thalamus across the adult lifespan using a dataset carefully quality controlled, yielding a final sample of 178 for the morphological analyses, and 162 for the T1w/T2w analyses from an initial dataset of 253 healthy subjects, aged 18–83. In accordance with previous cross‐sectional studies of adults, we observed age‐related volume decrease that followed a quadratic relationship between age and bilateral striatal and thalamic volumes, and a linear relationship in the globus pallidus. Our shape indices consistently demonstrated age‐related posterior and medial areal contraction bilaterally across all three structures. Beyond morphology, we observed a quadratic inverted U‐shaped relationship between T1w/T2w signal ratio and age, with a peak value occurring in middle age (at around 50 years old). After permutation testing, the Akaike information criterion determined age relationships remained significant for the bilateral globus pallidus and thalamus, for both the volumetric and T1w/T2w analyses. Our findings serve to strengthen and expand upon previous volumetric analyses by providing a normative baseline of morphology and microstructure of these structures to which future studies investigating patients with various disorders can be compared.
doi_str_mv 10.1002/hbm.24771
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6864890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281110635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5091-74acd31575983abec8b19464033166edf4e7613de381d1240b3eabe57b8b5a3a3</originalsourceid><addsrcrecordid>eNp1kd1qFTEUhQdR7I9e-AIS8MZCp82ezF9uClrUCi2C6HXYM9lzJiUzc5xkKueuj-Az-iTunlOLCpKLrCQfi521kuQFyBOQMjvtm-Eky6sKHiX7IHWVStDq8Z0ui1TnFewlByFcSwlQSHia7CnIiyyr9X5ye_X55-2PBgNZgStiPZPHyCfqOmpjENMoYk8ixNlhXIZjsfJTswSxRu-dXcKxwNEygh4Hvnaj6Al97DcsrbthBH0Q2M5TCFsntIuPwruOwhrHZ8mTjgF6fr8fJl_fv_tyfpFefvrw8fzNZdoWUkNa5dhaBUVV6FphQ23dgM7LXCoFZUm2y6kqQVlSNVjIctkoYqyomropUKE6TM52vuulGci2NMYZvVnPbsB5YyZ05u-X0fVmNd2Ysi7zWks2eH1vME_fFgrRDC605D2ONC3BcJ4AnLgqGH31D3o9LfPI3zOZgkxqXiVTRztqG81M3cMwIM1dr4Z7NdtemX355_QP5O8iGTjdAd-dp83_nczF26ud5S9GlbBK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312090906</pqid></control><display><type>article</type><title>MR‐based age‐related effects on the striatum, globus pallidus, and thalamus in healthy individuals across the adult lifespan</title><source>MEDLINE</source><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tullo, Stephanie ; Patel, Raihaan ; Devenyi, Gabriel A. ; Salaciak, Alyssa ; Bedford, Saashi A. ; Farzin, Sarah ; Wlodarski, Nancy ; Tardif, Christine L. ; Breitner, John C. S. ; Chakravarty, M. Mallar</creator><creatorcontrib>Tullo, Stephanie ; Patel, Raihaan ; Devenyi, Gabriel A. ; Salaciak, Alyssa ; Bedford, Saashi A. ; Farzin, Sarah ; Wlodarski, Nancy ; Tardif, Christine L. ; Breitner, John C. S. ; Chakravarty, M. Mallar ; PREVENT-AD Research Group ; the PREVENT‐AD Research Group</creatorcontrib><description>While numerous studies have used magnetic resonance imaging (MRI) to elucidate normative age‐related trajectories in subcortical structures across the human lifespan, there exists substantial heterogeneity among different studies. Here, we investigated the normative relationships between age and morphology (i.e., volume and shape), and microstructure (using the T1‐weighted/T2‐weighted [T1w/T2w] signal ratio as a putative index of myelin and microstructure) of the striatum, globus pallidus, and thalamus across the adult lifespan using a dataset carefully quality controlled, yielding a final sample of 178 for the morphological analyses, and 162 for the T1w/T2w analyses from an initial dataset of 253 healthy subjects, aged 18–83. In accordance with previous cross‐sectional studies of adults, we observed age‐related volume decrease that followed a quadratic relationship between age and bilateral striatal and thalamic volumes, and a linear relationship in the globus pallidus. Our shape indices consistently demonstrated age‐related posterior and medial areal contraction bilaterally across all three structures. Beyond morphology, we observed a quadratic inverted U‐shaped relationship between T1w/T2w signal ratio and age, with a peak value occurring in middle age (at around 50 years old). After permutation testing, the Akaike information criterion determined age relationships remained significant for the bilateral globus pallidus and thalamus, for both the volumetric and T1w/T2w analyses. Our findings serve to strengthen and expand upon previous volumetric analyses by providing a normative baseline of morphology and microstructure of these structures to which future studies investigating patients with various disorders can be compared.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24771</identifier><identifier>PMID: 31452289</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adolescent ; Adult ; adult lifespan ; Age ; Aged ; Aged, 80 and over ; Aging - physiology ; basal ganglia ; Chronology ; Contraction ; Corpus Striatum - diagnostic imaging ; Corpus Striatum - physiology ; Datasets ; Female ; Globus pallidus ; Globus Pallidus - diagnostic imaging ; Globus Pallidus - physiology ; healthy aging ; Healthy Volunteers ; Heterogeneity ; Humans ; Life span ; Longevity - physiology ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - trends ; Male ; Microstructure ; Middle Aged ; Morphology ; Myelin ; Neostriatum ; NMR ; Nuclear magnetic resonance ; Permutations ; segmentation ; surface‐based morphology ; Thalamus ; Thalamus - diagnostic imaging ; Thalamus - physiology ; Young Adult</subject><ispartof>Human brain mapping, 2019-12, Vol.40 (18), p.5269-5288</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc.</rights><rights>2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5091-74acd31575983abec8b19464033166edf4e7613de381d1240b3eabe57b8b5a3a3</citedby><cites>FETCH-LOGICAL-c5091-74acd31575983abec8b19464033166edf4e7613de381d1240b3eabe57b8b5a3a3</cites><orcidid>0000-0002-7766-1187 ; 0000-0003-4608-3000 ; 0000-0001-8356-6808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864890/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864890/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,27924,27925,45574,45575,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31452289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tullo, Stephanie</creatorcontrib><creatorcontrib>Patel, Raihaan</creatorcontrib><creatorcontrib>Devenyi, Gabriel A.</creatorcontrib><creatorcontrib>Salaciak, Alyssa</creatorcontrib><creatorcontrib>Bedford, Saashi A.</creatorcontrib><creatorcontrib>Farzin, Sarah</creatorcontrib><creatorcontrib>Wlodarski, Nancy</creatorcontrib><creatorcontrib>Tardif, Christine L.</creatorcontrib><creatorcontrib>Breitner, John C. S.</creatorcontrib><creatorcontrib>Chakravarty, M. Mallar</creatorcontrib><creatorcontrib>PREVENT-AD Research Group</creatorcontrib><creatorcontrib>the PREVENT‐AD Research Group</creatorcontrib><title>MR‐based age‐related effects on the striatum, globus pallidus, and thalamus in healthy individuals across the adult lifespan</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>While numerous studies have used magnetic resonance imaging (MRI) to elucidate normative age‐related trajectories in subcortical structures across the human lifespan, there exists substantial heterogeneity among different studies. Here, we investigated the normative relationships between age and morphology (i.e., volume and shape), and microstructure (using the T1‐weighted/T2‐weighted [T1w/T2w] signal ratio as a putative index of myelin and microstructure) of the striatum, globus pallidus, and thalamus across the adult lifespan using a dataset carefully quality controlled, yielding a final sample of 178 for the morphological analyses, and 162 for the T1w/T2w analyses from an initial dataset of 253 healthy subjects, aged 18–83. In accordance with previous cross‐sectional studies of adults, we observed age‐related volume decrease that followed a quadratic relationship between age and bilateral striatal and thalamic volumes, and a linear relationship in the globus pallidus. Our shape indices consistently demonstrated age‐related posterior and medial areal contraction bilaterally across all three structures. Beyond morphology, we observed a quadratic inverted U‐shaped relationship between T1w/T2w signal ratio and age, with a peak value occurring in middle age (at around 50 years old). After permutation testing, the Akaike information criterion determined age relationships remained significant for the bilateral globus pallidus and thalamus, for both the volumetric and T1w/T2w analyses. Our findings serve to strengthen and expand upon previous volumetric analyses by providing a normative baseline of morphology and microstructure of these structures to which future studies investigating patients with various disorders can be compared.</description><subject>Adolescent</subject><subject>Adult</subject><subject>adult lifespan</subject><subject>Age</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging - physiology</subject><subject>basal ganglia</subject><subject>Chronology</subject><subject>Contraction</subject><subject>Corpus Striatum - diagnostic imaging</subject><subject>Corpus Striatum - physiology</subject><subject>Datasets</subject><subject>Female</subject><subject>Globus pallidus</subject><subject>Globus Pallidus - diagnostic imaging</subject><subject>Globus Pallidus - physiology</subject><subject>healthy aging</subject><subject>Healthy Volunteers</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Life span</subject><subject>Longevity - physiology</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - trends</subject><subject>Male</subject><subject>Microstructure</subject><subject>Middle Aged</subject><subject>Morphology</subject><subject>Myelin</subject><subject>Neostriatum</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Permutations</subject><subject>segmentation</subject><subject>surface‐based morphology</subject><subject>Thalamus</subject><subject>Thalamus - diagnostic imaging</subject><subject>Thalamus - physiology</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kd1qFTEUhQdR7I9e-AIS8MZCp82ezF9uClrUCi2C6HXYM9lzJiUzc5xkKueuj-Az-iTunlOLCpKLrCQfi521kuQFyBOQMjvtm-Eky6sKHiX7IHWVStDq8Z0ui1TnFewlByFcSwlQSHia7CnIiyyr9X5ye_X55-2PBgNZgStiPZPHyCfqOmpjENMoYk8ixNlhXIZjsfJTswSxRu-dXcKxwNEygh4Hvnaj6Al97DcsrbthBH0Q2M5TCFsntIuPwruOwhrHZ8mTjgF6fr8fJl_fv_tyfpFefvrw8fzNZdoWUkNa5dhaBUVV6FphQ23dgM7LXCoFZUm2y6kqQVlSNVjIctkoYqyomropUKE6TM52vuulGci2NMYZvVnPbsB5YyZ05u-X0fVmNd2Ysi7zWks2eH1vME_fFgrRDC605D2ONC3BcJ4AnLgqGH31D3o9LfPI3zOZgkxqXiVTRztqG81M3cMwIM1dr4Z7NdtemX355_QP5O8iGTjdAd-dp83_nczF26ud5S9GlbBK</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Tullo, Stephanie</creator><creator>Patel, Raihaan</creator><creator>Devenyi, Gabriel A.</creator><creator>Salaciak, Alyssa</creator><creator>Bedford, Saashi A.</creator><creator>Farzin, Sarah</creator><creator>Wlodarski, Nancy</creator><creator>Tardif, Christine L.</creator><creator>Breitner, John C. S.</creator><creator>Chakravarty, M. Mallar</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7766-1187</orcidid><orcidid>https://orcid.org/0000-0003-4608-3000</orcidid><orcidid>https://orcid.org/0000-0001-8356-6808</orcidid></search><sort><creationdate>20191215</creationdate><title>MR‐based age‐related effects on the striatum, globus pallidus, and thalamus in healthy individuals across the adult lifespan</title><author>Tullo, Stephanie ; Patel, Raihaan ; Devenyi, Gabriel A. ; Salaciak, Alyssa ; Bedford, Saashi A. ; Farzin, Sarah ; Wlodarski, Nancy ; Tardif, Christine L. ; Breitner, John C. S. ; Chakravarty, M. Mallar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5091-74acd31575983abec8b19464033166edf4e7613de381d1240b3eabe57b8b5a3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>adult lifespan</topic><topic>Age</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging - physiology</topic><topic>basal ganglia</topic><topic>Chronology</topic><topic>Contraction</topic><topic>Corpus Striatum - diagnostic imaging</topic><topic>Corpus Striatum - physiology</topic><topic>Datasets</topic><topic>Female</topic><topic>Globus pallidus</topic><topic>Globus Pallidus - diagnostic imaging</topic><topic>Globus Pallidus - physiology</topic><topic>healthy aging</topic><topic>Healthy Volunteers</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Life span</topic><topic>Longevity - physiology</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - trends</topic><topic>Male</topic><topic>Microstructure</topic><topic>Middle Aged</topic><topic>Morphology</topic><topic>Myelin</topic><topic>Neostriatum</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Permutations</topic><topic>segmentation</topic><topic>surface‐based morphology</topic><topic>Thalamus</topic><topic>Thalamus - diagnostic imaging</topic><topic>Thalamus - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tullo, Stephanie</creatorcontrib><creatorcontrib>Patel, Raihaan</creatorcontrib><creatorcontrib>Devenyi, Gabriel A.</creatorcontrib><creatorcontrib>Salaciak, Alyssa</creatorcontrib><creatorcontrib>Bedford, Saashi A.</creatorcontrib><creatorcontrib>Farzin, Sarah</creatorcontrib><creatorcontrib>Wlodarski, Nancy</creatorcontrib><creatorcontrib>Tardif, Christine L.</creatorcontrib><creatorcontrib>Breitner, John C. S.</creatorcontrib><creatorcontrib>Chakravarty, M. Mallar</creatorcontrib><creatorcontrib>PREVENT-AD Research Group</creatorcontrib><creatorcontrib>the PREVENT‐AD Research Group</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tullo, Stephanie</au><au>Patel, Raihaan</au><au>Devenyi, Gabriel A.</au><au>Salaciak, Alyssa</au><au>Bedford, Saashi A.</au><au>Farzin, Sarah</au><au>Wlodarski, Nancy</au><au>Tardif, Christine L.</au><au>Breitner, John C. S.</au><au>Chakravarty, M. Mallar</au><aucorp>PREVENT-AD Research Group</aucorp><aucorp>the PREVENT‐AD Research Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MR‐based age‐related effects on the striatum, globus pallidus, and thalamus in healthy individuals across the adult lifespan</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2019-12-15</date><risdate>2019</risdate><volume>40</volume><issue>18</issue><spage>5269</spage><epage>5288</epage><pages>5269-5288</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>While numerous studies have used magnetic resonance imaging (MRI) to elucidate normative age‐related trajectories in subcortical structures across the human lifespan, there exists substantial heterogeneity among different studies. Here, we investigated the normative relationships between age and morphology (i.e., volume and shape), and microstructure (using the T1‐weighted/T2‐weighted [T1w/T2w] signal ratio as a putative index of myelin and microstructure) of the striatum, globus pallidus, and thalamus across the adult lifespan using a dataset carefully quality controlled, yielding a final sample of 178 for the morphological analyses, and 162 for the T1w/T2w analyses from an initial dataset of 253 healthy subjects, aged 18–83. In accordance with previous cross‐sectional studies of adults, we observed age‐related volume decrease that followed a quadratic relationship between age and bilateral striatal and thalamic volumes, and a linear relationship in the globus pallidus. Our shape indices consistently demonstrated age‐related posterior and medial areal contraction bilaterally across all three structures. Beyond morphology, we observed a quadratic inverted U‐shaped relationship between T1w/T2w signal ratio and age, with a peak value occurring in middle age (at around 50 years old). After permutation testing, the Akaike information criterion determined age relationships remained significant for the bilateral globus pallidus and thalamus, for both the volumetric and T1w/T2w analyses. Our findings serve to strengthen and expand upon previous volumetric analyses by providing a normative baseline of morphology and microstructure of these structures to which future studies investigating patients with various disorders can be compared.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31452289</pmid><doi>10.1002/hbm.24771</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7766-1187</orcidid><orcidid>https://orcid.org/0000-0003-4608-3000</orcidid><orcidid>https://orcid.org/0000-0001-8356-6808</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2019-12, Vol.40 (18), p.5269-5288
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6864890
source MEDLINE; Wiley Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adolescent
Adult
adult lifespan
Age
Aged
Aged, 80 and over
Aging - physiology
basal ganglia
Chronology
Contraction
Corpus Striatum - diagnostic imaging
Corpus Striatum - physiology
Datasets
Female
Globus pallidus
Globus Pallidus - diagnostic imaging
Globus Pallidus - physiology
healthy aging
Healthy Volunteers
Heterogeneity
Humans
Life span
Longevity - physiology
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - trends
Male
Microstructure
Middle Aged
Morphology
Myelin
Neostriatum
NMR
Nuclear magnetic resonance
Permutations
segmentation
surface‐based morphology
Thalamus
Thalamus - diagnostic imaging
Thalamus - physiology
Young Adult
title MR‐based age‐related effects on the striatum, globus pallidus, and thalamus in healthy individuals across the adult lifespan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MR%E2%80%90based%20age%E2%80%90related%20effects%20on%20the%20striatum,%20globus%20pallidus,%20and%20thalamus%20in%20healthy%20individuals%20across%20the%20adult%20lifespan&rft.jtitle=Human%20brain%20mapping&rft.au=Tullo,%20Stephanie&rft.aucorp=PREVENT-AD%20Research%20Group&rft.date=2019-12-15&rft.volume=40&rft.issue=18&rft.spage=5269&rft.epage=5288&rft.pages=5269-5288&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24771&rft_dat=%3Cproquest_pubme%3E2281110635%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312090906&rft_id=info:pmid/31452289&rfr_iscdi=true