The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical

Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2019-10, Vol.20 (21), p.5420
Hauptverfasser: Li, Xuan, Gao, Yixiang, Zuo, Chenpeng, Zheng, Siyuan, Xu, Fei, Sun, Yanhui, Zhang, Qingzhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 5420
container_title International journal of molecular sciences
container_volume 20
creator Li, Xuan
Gao, Yixiang
Zuo, Chenpeng
Zheng, Siyuan
Xu, Fei
Sun, Yanhui
Zhang, Qingzhu
description Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600-1200 K, using canonical variational transition state theory with a small-curvature tunneling contribution (CVT/SCT). This paper showed that the production of DBF, DBT, and CA from the reactions of BF, BT, and IN with CPDyl involved six elementary steps: the addition reaction, ring closure, the first H shift, C-C cleavage, the second H shift, and elimination of CH or H. The cleavage of the C-C bond was regarded as the rate-determining step for each pathway due to the extremely high barrier. The 1-methyl substituted products were more easily formed than the 4-methyl substituted products. The main products were DBF and 1-methyl-DBF, DBT and 1-methyl-DBT, and CA and 1-methyl-CA for reactions of BF, BT, and IN with CPDyl, respectively. The ranking of DBF, DBT, and CA formation potential was as follows: DBT and methyl-DBT formation > DBF and methyl-DBF formation > CA, and methyl-CA formation. Comparison with the reaction of naphthalene with CPDyl indicated that the reactions of CPDyl attacking a benzene ring and a furan/thiophene/pyrrole ring could be inferred to be comparable under high temperature conditions.
doi_str_mv 10.3390/ijms20215420
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6861977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312269923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-e001a7f5f3610c20857c5a89e5518a89bb469fc3a0b1952688348cc9062275063</originalsourceid><addsrcrecordid>eNpdkktv1DAUhS0EoqWwY40sselIDfgRO_YGqZMyZaTyEBrWluNxiEeJPdgJaPrb-HG4r9HQ1b06_u7RvdYB4DVG7yiV6L3bDIkggllJ0BNwjEtCCoR49fSgPwIvUtogRChh8jk4opgLyhA_Bn9XnYWXOhXfOp0sXIQ46NEFDz9b02nv0gBDCy9cY_11aKeoPTy9mC9mZw_a2Lmw7ay3N_oq69qvYa1jo69Dn8X6fAbbGAY4P3C4NZg_Gt9PL_36dnT5ZQb_uLGD9c70YWv9qNfO-l0Pv-fG6P4leNbqPtlX9_UE_Fh8XNWfiquvl8v6_KowJSZjYRHCumpZSzlGhiDBKsO0kJYxLHJtmpLL1lCNGiwZ4ULQUhgjESekyr9ET8CHO9_t1Ax2bfImUfdqG92g404F7dT_L9516mf4rbjgWFZVNji9N4jh12TTqAaXjO177W2YkiIUE8KlJDSjbx-hmzBFn89ThJWCc4wRytTZHWViSCnadr8MRuomFuowFhl_c3jAHn7IAf0HXtyxEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548661100</pqid></control><display><type>article</type><title>The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Li, Xuan ; Gao, Yixiang ; Zuo, Chenpeng ; Zheng, Siyuan ; Xu, Fei ; Sun, Yanhui ; Zhang, Qingzhu</creator><creatorcontrib>Li, Xuan ; Gao, Yixiang ; Zuo, Chenpeng ; Zheng, Siyuan ; Xu, Fei ; Sun, Yanhui ; Zhang, Qingzhu</creatorcontrib><description>Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600-1200 K, using canonical variational transition state theory with a small-curvature tunneling contribution (CVT/SCT). This paper showed that the production of DBF, DBT, and CA from the reactions of BF, BT, and IN with CPDyl involved six elementary steps: the addition reaction, ring closure, the first H shift, C-C cleavage, the second H shift, and elimination of CH or H. The cleavage of the C-C bond was regarded as the rate-determining step for each pathway due to the extremely high barrier. The 1-methyl substituted products were more easily formed than the 4-methyl substituted products. The main products were DBF and 1-methyl-DBF, DBT and 1-methyl-DBT, and CA and 1-methyl-CA for reactions of BF, BT, and IN with CPDyl, respectively. The ranking of DBF, DBT, and CA formation potential was as follows: DBT and methyl-DBT formation &gt; DBF and methyl-DBF formation &gt; CA, and methyl-CA formation. Comparison with the reaction of naphthalene with CPDyl indicated that the reactions of CPDyl attacking a benzene ring and a furan/thiophene/pyrrole ring could be inferred to be comparable under high temperature conditions.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20215420</identifier><identifier>PMID: 31683506</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aromatic compounds ; Benzene ; Benzofuran ; Benzofurans - chemical synthesis ; Benzofurans - chemistry ; Benzothiophene ; Carbazole ; Carbazoles ; Carbazoles - chemical synthesis ; Carbazoles - chemistry ; Cleavage ; Coal ; Covalent bonds ; Cyclopentanes - chemistry ; Density functional theory ; Dibenzofuran ; Dibenzothiophene ; Free Radicals - chemistry ; Gases - chemistry ; Heterocyclic compounds ; High temperature ; Hydrocarbons ; Indoles ; Indoles - chemistry ; Kinetics ; Models, Chemical ; Models, Molecular ; Molecular Structure ; Naphthalene ; Polycyclic aromatic hydrocarbons ; Polycyclic Aromatic Hydrocarbons - chemical synthesis ; Polycyclic Aromatic Hydrocarbons - chemistry ; Pyrolysis ; Substitutes ; Sulfur ; Temperature ; Thiophenes - chemical synthesis ; Thiophenes - chemistry ; Toxicity</subject><ispartof>International journal of molecular sciences, 2019-10, Vol.20 (21), p.5420</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-e001a7f5f3610c20857c5a89e5518a89bb469fc3a0b1952688348cc9062275063</citedby><cites>FETCH-LOGICAL-c412t-e001a7f5f3610c20857c5a89e5518a89bb469fc3a0b1952688348cc9062275063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861977/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861977/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31683506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xuan</creatorcontrib><creatorcontrib>Gao, Yixiang</creatorcontrib><creatorcontrib>Zuo, Chenpeng</creatorcontrib><creatorcontrib>Zheng, Siyuan</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Sun, Yanhui</creatorcontrib><creatorcontrib>Zhang, Qingzhu</creatorcontrib><title>The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600-1200 K, using canonical variational transition state theory with a small-curvature tunneling contribution (CVT/SCT). This paper showed that the production of DBF, DBT, and CA from the reactions of BF, BT, and IN with CPDyl involved six elementary steps: the addition reaction, ring closure, the first H shift, C-C cleavage, the second H shift, and elimination of CH or H. The cleavage of the C-C bond was regarded as the rate-determining step for each pathway due to the extremely high barrier. The 1-methyl substituted products were more easily formed than the 4-methyl substituted products. The main products were DBF and 1-methyl-DBF, DBT and 1-methyl-DBT, and CA and 1-methyl-CA for reactions of BF, BT, and IN with CPDyl, respectively. The ranking of DBF, DBT, and CA formation potential was as follows: DBT and methyl-DBT formation &gt; DBF and methyl-DBF formation &gt; CA, and methyl-CA formation. Comparison with the reaction of naphthalene with CPDyl indicated that the reactions of CPDyl attacking a benzene ring and a furan/thiophene/pyrrole ring could be inferred to be comparable under high temperature conditions.</description><subject>Aromatic compounds</subject><subject>Benzene</subject><subject>Benzofuran</subject><subject>Benzofurans - chemical synthesis</subject><subject>Benzofurans - chemistry</subject><subject>Benzothiophene</subject><subject>Carbazole</subject><subject>Carbazoles</subject><subject>Carbazoles - chemical synthesis</subject><subject>Carbazoles - chemistry</subject><subject>Cleavage</subject><subject>Coal</subject><subject>Covalent bonds</subject><subject>Cyclopentanes - chemistry</subject><subject>Density functional theory</subject><subject>Dibenzofuran</subject><subject>Dibenzothiophene</subject><subject>Free Radicals - chemistry</subject><subject>Gases - chemistry</subject><subject>Heterocyclic compounds</subject><subject>High temperature</subject><subject>Hydrocarbons</subject><subject>Indoles</subject><subject>Indoles - chemistry</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Naphthalene</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Polycyclic Aromatic Hydrocarbons - chemical synthesis</subject><subject>Polycyclic Aromatic Hydrocarbons - chemistry</subject><subject>Pyrolysis</subject><subject>Substitutes</subject><subject>Sulfur</subject><subject>Temperature</subject><subject>Thiophenes - chemical synthesis</subject><subject>Thiophenes - chemistry</subject><subject>Toxicity</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkktv1DAUhS0EoqWwY40sselIDfgRO_YGqZMyZaTyEBrWluNxiEeJPdgJaPrb-HG4r9HQ1b06_u7RvdYB4DVG7yiV6L3bDIkggllJ0BNwjEtCCoR49fSgPwIvUtogRChh8jk4opgLyhA_Bn9XnYWXOhXfOp0sXIQ46NEFDz9b02nv0gBDCy9cY_11aKeoPTy9mC9mZw_a2Lmw7ay3N_oq69qvYa1jo69Dn8X6fAbbGAY4P3C4NZg_Gt9PL_36dnT5ZQb_uLGD9c70YWv9qNfO-l0Pv-fG6P4leNbqPtlX9_UE_Fh8XNWfiquvl8v6_KowJSZjYRHCumpZSzlGhiDBKsO0kJYxLHJtmpLL1lCNGiwZ4ULQUhgjESekyr9ET8CHO9_t1Ax2bfImUfdqG92g404F7dT_L9516mf4rbjgWFZVNji9N4jh12TTqAaXjO177W2YkiIUE8KlJDSjbx-hmzBFn89ThJWCc4wRytTZHWViSCnadr8MRuomFuowFhl_c3jAHn7IAf0HXtyxEQ</recordid><startdate>20191031</startdate><enddate>20191031</enddate><creator>Li, Xuan</creator><creator>Gao, Yixiang</creator><creator>Zuo, Chenpeng</creator><creator>Zheng, Siyuan</creator><creator>Xu, Fei</creator><creator>Sun, Yanhui</creator><creator>Zhang, Qingzhu</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191031</creationdate><title>The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical</title><author>Li, Xuan ; Gao, Yixiang ; Zuo, Chenpeng ; Zheng, Siyuan ; Xu, Fei ; Sun, Yanhui ; Zhang, Qingzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-e001a7f5f3610c20857c5a89e5518a89bb469fc3a0b1952688348cc9062275063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aromatic compounds</topic><topic>Benzene</topic><topic>Benzofuran</topic><topic>Benzofurans - chemical synthesis</topic><topic>Benzofurans - chemistry</topic><topic>Benzothiophene</topic><topic>Carbazole</topic><topic>Carbazoles</topic><topic>Carbazoles - chemical synthesis</topic><topic>Carbazoles - chemistry</topic><topic>Cleavage</topic><topic>Coal</topic><topic>Covalent bonds</topic><topic>Cyclopentanes - chemistry</topic><topic>Density functional theory</topic><topic>Dibenzofuran</topic><topic>Dibenzothiophene</topic><topic>Free Radicals - chemistry</topic><topic>Gases - chemistry</topic><topic>Heterocyclic compounds</topic><topic>High temperature</topic><topic>Hydrocarbons</topic><topic>Indoles</topic><topic>Indoles - chemistry</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Naphthalene</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Polycyclic Aromatic Hydrocarbons - chemical synthesis</topic><topic>Polycyclic Aromatic Hydrocarbons - chemistry</topic><topic>Pyrolysis</topic><topic>Substitutes</topic><topic>Sulfur</topic><topic>Temperature</topic><topic>Thiophenes - chemical synthesis</topic><topic>Thiophenes - chemistry</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuan</creatorcontrib><creatorcontrib>Gao, Yixiang</creatorcontrib><creatorcontrib>Zuo, Chenpeng</creatorcontrib><creatorcontrib>Zheng, Siyuan</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Sun, Yanhui</creatorcontrib><creatorcontrib>Zhang, Qingzhu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuan</au><au>Gao, Yixiang</au><au>Zuo, Chenpeng</au><au>Zheng, Siyuan</au><au>Xu, Fei</au><au>Sun, Yanhui</au><au>Zhang, Qingzhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-10-31</date><risdate>2019</risdate><volume>20</volume><issue>21</issue><spage>5420</spage><pages>5420-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600-1200 K, using canonical variational transition state theory with a small-curvature tunneling contribution (CVT/SCT). This paper showed that the production of DBF, DBT, and CA from the reactions of BF, BT, and IN with CPDyl involved six elementary steps: the addition reaction, ring closure, the first H shift, C-C cleavage, the second H shift, and elimination of CH or H. The cleavage of the C-C bond was regarded as the rate-determining step for each pathway due to the extremely high barrier. The 1-methyl substituted products were more easily formed than the 4-methyl substituted products. The main products were DBF and 1-methyl-DBF, DBT and 1-methyl-DBT, and CA and 1-methyl-CA for reactions of BF, BT, and IN with CPDyl, respectively. The ranking of DBF, DBT, and CA formation potential was as follows: DBT and methyl-DBT formation &gt; DBF and methyl-DBF formation &gt; CA, and methyl-CA formation. Comparison with the reaction of naphthalene with CPDyl indicated that the reactions of CPDyl attacking a benzene ring and a furan/thiophene/pyrrole ring could be inferred to be comparable under high temperature conditions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31683506</pmid><doi>10.3390/ijms20215420</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2019-10, Vol.20 (21), p.5420
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6861977
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Aromatic compounds
Benzene
Benzofuran
Benzofurans - chemical synthesis
Benzofurans - chemistry
Benzothiophene
Carbazole
Carbazoles
Carbazoles - chemical synthesis
Carbazoles - chemistry
Cleavage
Coal
Covalent bonds
Cyclopentanes - chemistry
Density functional theory
Dibenzofuran
Dibenzothiophene
Free Radicals - chemistry
Gases - chemistry
Heterocyclic compounds
High temperature
Hydrocarbons
Indoles
Indoles - chemistry
Kinetics
Models, Chemical
Models, Molecular
Molecular Structure
Naphthalene
Polycyclic aromatic hydrocarbons
Polycyclic Aromatic Hydrocarbons - chemical synthesis
Polycyclic Aromatic Hydrocarbons - chemistry
Pyrolysis
Substitutes
Sulfur
Temperature
Thiophenes - chemical synthesis
Thiophenes - chemistry
Toxicity
title The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Gas-Phase%20Formation%20Mechanism%20of%20Dibenzofuran%20(DBF),%20Dibenzothiophene%20(DBT),%20and%20Carbazole%20(CA)%20from%20Benzofuran%20(BF),%20Benzothiophene%20(BT),%20and%20Indole%20(IN)%20with%20Cyclopentadienyl%20Radical&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Li,%20Xuan&rft.date=2019-10-31&rft.volume=20&rft.issue=21&rft.spage=5420&rft.pages=5420-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20215420&rft_dat=%3Cproquest_pubme%3E2312269923%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548661100&rft_id=info:pmid/31683506&rfr_iscdi=true