The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical
Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemi...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2019-10, Vol.20 (21), p.5420 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 5420 |
container_title | International journal of molecular sciences |
container_volume | 20 |
creator | Li, Xuan Gao, Yixiang Zuo, Chenpeng Zheng, Siyuan Xu, Fei Sun, Yanhui Zhang, Qingzhu |
description | Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600-1200 K, using canonical variational transition state theory with a small-curvature tunneling contribution (CVT/SCT). This paper showed that the production of DBF, DBT, and CA from the reactions of BF, BT, and IN with CPDyl involved six elementary steps: the addition reaction, ring closure, the first H shift, C-C cleavage, the second H shift, and elimination of CH
or H. The cleavage of the C-C bond was regarded as the rate-determining step for each pathway due to the extremely high barrier. The 1-methyl substituted products were more easily formed than the 4-methyl substituted products. The main products were DBF and 1-methyl-DBF, DBT and 1-methyl-DBT, and CA and 1-methyl-CA for reactions of BF, BT, and IN with CPDyl, respectively. The ranking of DBF, DBT, and CA formation potential was as follows: DBT and methyl-DBT formation > DBF and methyl-DBF formation > CA, and methyl-CA formation. Comparison with the reaction of naphthalene with CPDyl indicated that the reactions of CPDyl attacking a benzene ring and a furan/thiophene/pyrrole ring could be inferred to be comparable under high temperature conditions. |
doi_str_mv | 10.3390/ijms20215420 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6861977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312269923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-e001a7f5f3610c20857c5a89e5518a89bb469fc3a0b1952688348cc9062275063</originalsourceid><addsrcrecordid>eNpdkktv1DAUhS0EoqWwY40sselIDfgRO_YGqZMyZaTyEBrWluNxiEeJPdgJaPrb-HG4r9HQ1b06_u7RvdYB4DVG7yiV6L3bDIkggllJ0BNwjEtCCoR49fSgPwIvUtogRChh8jk4opgLyhA_Bn9XnYWXOhXfOp0sXIQ46NEFDz9b02nv0gBDCy9cY_11aKeoPTy9mC9mZw_a2Lmw7ay3N_oq69qvYa1jo69Dn8X6fAbbGAY4P3C4NZg_Gt9PL_36dnT5ZQb_uLGD9c70YWv9qNfO-l0Pv-fG6P4leNbqPtlX9_UE_Fh8XNWfiquvl8v6_KowJSZjYRHCumpZSzlGhiDBKsO0kJYxLHJtmpLL1lCNGiwZ4ULQUhgjESekyr9ET8CHO9_t1Ax2bfImUfdqG92g404F7dT_L9516mf4rbjgWFZVNji9N4jh12TTqAaXjO177W2YkiIUE8KlJDSjbx-hmzBFn89ThJWCc4wRytTZHWViSCnadr8MRuomFuowFhl_c3jAHn7IAf0HXtyxEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548661100</pqid></control><display><type>article</type><title>The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Li, Xuan ; Gao, Yixiang ; Zuo, Chenpeng ; Zheng, Siyuan ; Xu, Fei ; Sun, Yanhui ; Zhang, Qingzhu</creator><creatorcontrib>Li, Xuan ; Gao, Yixiang ; Zuo, Chenpeng ; Zheng, Siyuan ; Xu, Fei ; Sun, Yanhui ; Zhang, Qingzhu</creatorcontrib><description>Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600-1200 K, using canonical variational transition state theory with a small-curvature tunneling contribution (CVT/SCT). This paper showed that the production of DBF, DBT, and CA from the reactions of BF, BT, and IN with CPDyl involved six elementary steps: the addition reaction, ring closure, the first H shift, C-C cleavage, the second H shift, and elimination of CH
or H. The cleavage of the C-C bond was regarded as the rate-determining step for each pathway due to the extremely high barrier. The 1-methyl substituted products were more easily formed than the 4-methyl substituted products. The main products were DBF and 1-methyl-DBF, DBT and 1-methyl-DBT, and CA and 1-methyl-CA for reactions of BF, BT, and IN with CPDyl, respectively. The ranking of DBF, DBT, and CA formation potential was as follows: DBT and methyl-DBT formation > DBF and methyl-DBF formation > CA, and methyl-CA formation. Comparison with the reaction of naphthalene with CPDyl indicated that the reactions of CPDyl attacking a benzene ring and a furan/thiophene/pyrrole ring could be inferred to be comparable under high temperature conditions.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20215420</identifier><identifier>PMID: 31683506</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aromatic compounds ; Benzene ; Benzofuran ; Benzofurans - chemical synthesis ; Benzofurans - chemistry ; Benzothiophene ; Carbazole ; Carbazoles ; Carbazoles - chemical synthesis ; Carbazoles - chemistry ; Cleavage ; Coal ; Covalent bonds ; Cyclopentanes - chemistry ; Density functional theory ; Dibenzofuran ; Dibenzothiophene ; Free Radicals - chemistry ; Gases - chemistry ; Heterocyclic compounds ; High temperature ; Hydrocarbons ; Indoles ; Indoles - chemistry ; Kinetics ; Models, Chemical ; Models, Molecular ; Molecular Structure ; Naphthalene ; Polycyclic aromatic hydrocarbons ; Polycyclic Aromatic Hydrocarbons - chemical synthesis ; Polycyclic Aromatic Hydrocarbons - chemistry ; Pyrolysis ; Substitutes ; Sulfur ; Temperature ; Thiophenes - chemical synthesis ; Thiophenes - chemistry ; Toxicity</subject><ispartof>International journal of molecular sciences, 2019-10, Vol.20 (21), p.5420</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-e001a7f5f3610c20857c5a89e5518a89bb469fc3a0b1952688348cc9062275063</citedby><cites>FETCH-LOGICAL-c412t-e001a7f5f3610c20857c5a89e5518a89bb469fc3a0b1952688348cc9062275063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861977/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861977/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31683506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xuan</creatorcontrib><creatorcontrib>Gao, Yixiang</creatorcontrib><creatorcontrib>Zuo, Chenpeng</creatorcontrib><creatorcontrib>Zheng, Siyuan</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Sun, Yanhui</creatorcontrib><creatorcontrib>Zhang, Qingzhu</creatorcontrib><title>The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600-1200 K, using canonical variational transition state theory with a small-curvature tunneling contribution (CVT/SCT). This paper showed that the production of DBF, DBT, and CA from the reactions of BF, BT, and IN with CPDyl involved six elementary steps: the addition reaction, ring closure, the first H shift, C-C cleavage, the second H shift, and elimination of CH
or H. The cleavage of the C-C bond was regarded as the rate-determining step for each pathway due to the extremely high barrier. The 1-methyl substituted products were more easily formed than the 4-methyl substituted products. The main products were DBF and 1-methyl-DBF, DBT and 1-methyl-DBT, and CA and 1-methyl-CA for reactions of BF, BT, and IN with CPDyl, respectively. The ranking of DBF, DBT, and CA formation potential was as follows: DBT and methyl-DBT formation > DBF and methyl-DBF formation > CA, and methyl-CA formation. Comparison with the reaction of naphthalene with CPDyl indicated that the reactions of CPDyl attacking a benzene ring and a furan/thiophene/pyrrole ring could be inferred to be comparable under high temperature conditions.</description><subject>Aromatic compounds</subject><subject>Benzene</subject><subject>Benzofuran</subject><subject>Benzofurans - chemical synthesis</subject><subject>Benzofurans - chemistry</subject><subject>Benzothiophene</subject><subject>Carbazole</subject><subject>Carbazoles</subject><subject>Carbazoles - chemical synthesis</subject><subject>Carbazoles - chemistry</subject><subject>Cleavage</subject><subject>Coal</subject><subject>Covalent bonds</subject><subject>Cyclopentanes - chemistry</subject><subject>Density functional theory</subject><subject>Dibenzofuran</subject><subject>Dibenzothiophene</subject><subject>Free Radicals - chemistry</subject><subject>Gases - chemistry</subject><subject>Heterocyclic compounds</subject><subject>High temperature</subject><subject>Hydrocarbons</subject><subject>Indoles</subject><subject>Indoles - chemistry</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Naphthalene</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Polycyclic Aromatic Hydrocarbons - chemical synthesis</subject><subject>Polycyclic Aromatic Hydrocarbons - chemistry</subject><subject>Pyrolysis</subject><subject>Substitutes</subject><subject>Sulfur</subject><subject>Temperature</subject><subject>Thiophenes - chemical synthesis</subject><subject>Thiophenes - chemistry</subject><subject>Toxicity</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkktv1DAUhS0EoqWwY40sselIDfgRO_YGqZMyZaTyEBrWluNxiEeJPdgJaPrb-HG4r9HQ1b06_u7RvdYB4DVG7yiV6L3bDIkggllJ0BNwjEtCCoR49fSgPwIvUtogRChh8jk4opgLyhA_Bn9XnYWXOhXfOp0sXIQ46NEFDz9b02nv0gBDCy9cY_11aKeoPTy9mC9mZw_a2Lmw7ay3N_oq69qvYa1jo69Dn8X6fAbbGAY4P3C4NZg_Gt9PL_36dnT5ZQb_uLGD9c70YWv9qNfO-l0Pv-fG6P4leNbqPtlX9_UE_Fh8XNWfiquvl8v6_KowJSZjYRHCumpZSzlGhiDBKsO0kJYxLHJtmpLL1lCNGiwZ4ULQUhgjESekyr9ET8CHO9_t1Ax2bfImUfdqG92g404F7dT_L9516mf4rbjgWFZVNji9N4jh12TTqAaXjO177W2YkiIUE8KlJDSjbx-hmzBFn89ThJWCc4wRytTZHWViSCnadr8MRuomFuowFhl_c3jAHn7IAf0HXtyxEQ</recordid><startdate>20191031</startdate><enddate>20191031</enddate><creator>Li, Xuan</creator><creator>Gao, Yixiang</creator><creator>Zuo, Chenpeng</creator><creator>Zheng, Siyuan</creator><creator>Xu, Fei</creator><creator>Sun, Yanhui</creator><creator>Zhang, Qingzhu</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191031</creationdate><title>The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical</title><author>Li, Xuan ; Gao, Yixiang ; Zuo, Chenpeng ; Zheng, Siyuan ; Xu, Fei ; Sun, Yanhui ; Zhang, Qingzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-e001a7f5f3610c20857c5a89e5518a89bb469fc3a0b1952688348cc9062275063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aromatic compounds</topic><topic>Benzene</topic><topic>Benzofuran</topic><topic>Benzofurans - chemical synthesis</topic><topic>Benzofurans - chemistry</topic><topic>Benzothiophene</topic><topic>Carbazole</topic><topic>Carbazoles</topic><topic>Carbazoles - chemical synthesis</topic><topic>Carbazoles - chemistry</topic><topic>Cleavage</topic><topic>Coal</topic><topic>Covalent bonds</topic><topic>Cyclopentanes - chemistry</topic><topic>Density functional theory</topic><topic>Dibenzofuran</topic><topic>Dibenzothiophene</topic><topic>Free Radicals - chemistry</topic><topic>Gases - chemistry</topic><topic>Heterocyclic compounds</topic><topic>High temperature</topic><topic>Hydrocarbons</topic><topic>Indoles</topic><topic>Indoles - chemistry</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Naphthalene</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Polycyclic Aromatic Hydrocarbons - chemical synthesis</topic><topic>Polycyclic Aromatic Hydrocarbons - chemistry</topic><topic>Pyrolysis</topic><topic>Substitutes</topic><topic>Sulfur</topic><topic>Temperature</topic><topic>Thiophenes - chemical synthesis</topic><topic>Thiophenes - chemistry</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuan</creatorcontrib><creatorcontrib>Gao, Yixiang</creatorcontrib><creatorcontrib>Zuo, Chenpeng</creatorcontrib><creatorcontrib>Zheng, Siyuan</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Sun, Yanhui</creatorcontrib><creatorcontrib>Zhang, Qingzhu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuan</au><au>Gao, Yixiang</au><au>Zuo, Chenpeng</au><au>Zheng, Siyuan</au><au>Xu, Fei</au><au>Sun, Yanhui</au><au>Zhang, Qingzhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-10-31</date><risdate>2019</risdate><volume>20</volume><issue>21</issue><spage>5420</spage><pages>5420-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600-1200 K, using canonical variational transition state theory with a small-curvature tunneling contribution (CVT/SCT). This paper showed that the production of DBF, DBT, and CA from the reactions of BF, BT, and IN with CPDyl involved six elementary steps: the addition reaction, ring closure, the first H shift, C-C cleavage, the second H shift, and elimination of CH
or H. The cleavage of the C-C bond was regarded as the rate-determining step for each pathway due to the extremely high barrier. The 1-methyl substituted products were more easily formed than the 4-methyl substituted products. The main products were DBF and 1-methyl-DBF, DBT and 1-methyl-DBT, and CA and 1-methyl-CA for reactions of BF, BT, and IN with CPDyl, respectively. The ranking of DBF, DBT, and CA formation potential was as follows: DBT and methyl-DBT formation > DBF and methyl-DBF formation > CA, and methyl-CA formation. Comparison with the reaction of naphthalene with CPDyl indicated that the reactions of CPDyl attacking a benzene ring and a furan/thiophene/pyrrole ring could be inferred to be comparable under high temperature conditions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31683506</pmid><doi>10.3390/ijms20215420</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2019-10, Vol.20 (21), p.5420 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6861977 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Aromatic compounds Benzene Benzofuran Benzofurans - chemical synthesis Benzofurans - chemistry Benzothiophene Carbazole Carbazoles Carbazoles - chemical synthesis Carbazoles - chemistry Cleavage Coal Covalent bonds Cyclopentanes - chemistry Density functional theory Dibenzofuran Dibenzothiophene Free Radicals - chemistry Gases - chemistry Heterocyclic compounds High temperature Hydrocarbons Indoles Indoles - chemistry Kinetics Models, Chemical Models, Molecular Molecular Structure Naphthalene Polycyclic aromatic hydrocarbons Polycyclic Aromatic Hydrocarbons - chemical synthesis Polycyclic Aromatic Hydrocarbons - chemistry Pyrolysis Substitutes Sulfur Temperature Thiophenes - chemical synthesis Thiophenes - chemistry Toxicity |
title | The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Gas-Phase%20Formation%20Mechanism%20of%20Dibenzofuran%20(DBF),%20Dibenzothiophene%20(DBT),%20and%20Carbazole%20(CA)%20from%20Benzofuran%20(BF),%20Benzothiophene%20(BT),%20and%20Indole%20(IN)%20with%20Cyclopentadienyl%20Radical&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Li,%20Xuan&rft.date=2019-10-31&rft.volume=20&rft.issue=21&rft.spage=5420&rft.pages=5420-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20215420&rft_dat=%3Cproquest_pubme%3E2312269923%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548661100&rft_id=info:pmid/31683506&rfr_iscdi=true |