Global imprint of mycorrhizal fungi on whole-plant nutrient economics

Mycorrhizal fungi are critical members of the plant microbiome, forming a symbiosis with the roots of most plants on Earth. Most plant species partner with either arbuscular or ectomycorrhizal fungi, and these symbioses are thought to represent plant adaptations to fast and slow soil nutrient cyclin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-11, Vol.116 (46), p.23163-23168
Hauptverfasser: Averill, Colin, Bhatnagar, Jennifer M., Dietze, Michael C., Pearse, William D., Kivlin, Stephanie N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23168
container_issue 46
container_start_page 23163
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Averill, Colin
Bhatnagar, Jennifer M.
Dietze, Michael C.
Pearse, William D.
Kivlin, Stephanie N.
description Mycorrhizal fungi are critical members of the plant microbiome, forming a symbiosis with the roots of most plants on Earth. Most plant species partner with either arbuscular or ectomycorrhizal fungi, and these symbioses are thought to represent plant adaptations to fast and slow soil nutrient cycling rates. This generates a second hypothesis, that arbuscular and ectomycorrhizal plant species traits complement and reinforce these fungal strategies, resulting in nutrient acquisitive vs. conservative plant trait profiles. Here we analyzed 17,764 species level trait observations from 2,940 woody plant species to show that mycorrhizal plants differ systematically in nitrogen and phosphorus economic traits. Differences were clearest in temperate latitudes, where ectomycorrhizal plant species are more nitrogen use- and phosphorus use-conservative than arbuscular mycorrhizal species. This difference is reflected in both aboveground and belowground plant traits and is robust to controlling for evolutionary history, nitrogen fixation ability, deciduousness, latitude, and species climate niche. Furthermore, mycorrhizal effects are large and frequently similar to or greater in magnitude than the influence of plant nitrogen fixation ability or deciduous vs. evergreen leaf habit. Ectomycorrhizal plants are also more nitrogen conservative than arbuscular plants in boreal and tropical ecosystems, although differences in phosphorus use are less apparent outside temperate latitudes. Our findings bolster current theories of ecosystems rooted in mycorrhizal ecology and support the hypothesis that plant mycorrhizal association is linked to the evolution of plant nutrient economic strategies.
doi_str_mv 10.1073/pnas.1906655116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6859366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26861405</jstor_id><sourcerecordid>26861405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-c40cc005948a23bfbc61c0090bdc97671db901755951720b4ff2e9be87bcf7cf3</originalsourceid><addsrcrecordid>eNqFkTtvFDEUhS0EIstCTQUaiYZmknv9HDdIKAoBKRIN1NbYa2e9mhkv9kxQ-PV4tWF5NLjw634-OteHkJcI5wiKXeynvpyjBimFQJSPyApBYyu5hsdkBUBV23HKz8izUnYAoEUHT8kZQyk0MLEiV9dDsv3QxHGf4zQ3KTTjvUs5b-OPeh2W6TY2aWq-b9Pg2_3QV2Za5hx93XiXpjRGV56TJ6Efin_xsK7J1w9XXy4_tjefrz9dvr9pHVdyrjM4ByA073rKbLBOYj1rsBunlVS4sRpQCaEFKgqWh0C9tr5T1gXlAluTd0fd_WJHv3HVRO4HU62Pfb43qY_m78oUt-Y23RnZCc2krAJvHwRy-rb4MpsxFueH2pdPSzFUMskpxY7-H2UIVEtWx5q8-QfdpSVP9ScOFBcUGapKXRwpl1Mp2YeTbwRzSNMc0jS_06wvXv_Z7on_FV8FXh2BXZlTPtWp7CRyEOwnjf-lQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314521317</pqid></control><display><type>article</type><title>Global imprint of mycorrhizal fungi on whole-plant nutrient economics</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Averill, Colin ; Bhatnagar, Jennifer M. ; Dietze, Michael C. ; Pearse, William D. ; Kivlin, Stephanie N.</creator><creatorcontrib>Averill, Colin ; Bhatnagar, Jennifer M. ; Dietze, Michael C. ; Pearse, William D. ; Kivlin, Stephanie N.</creatorcontrib><description>Mycorrhizal fungi are critical members of the plant microbiome, forming a symbiosis with the roots of most plants on Earth. Most plant species partner with either arbuscular or ectomycorrhizal fungi, and these symbioses are thought to represent plant adaptations to fast and slow soil nutrient cycling rates. This generates a second hypothesis, that arbuscular and ectomycorrhizal plant species traits complement and reinforce these fungal strategies, resulting in nutrient acquisitive vs. conservative plant trait profiles. Here we analyzed 17,764 species level trait observations from 2,940 woody plant species to show that mycorrhizal plants differ systematically in nitrogen and phosphorus economic traits. Differences were clearest in temperate latitudes, where ectomycorrhizal plant species are more nitrogen use- and phosphorus use-conservative than arbuscular mycorrhizal species. This difference is reflected in both aboveground and belowground plant traits and is robust to controlling for evolutionary history, nitrogen fixation ability, deciduousness, latitude, and species climate niche. Furthermore, mycorrhizal effects are large and frequently similar to or greater in magnitude than the influence of plant nitrogen fixation ability or deciduous vs. evergreen leaf habit. Ectomycorrhizal plants are also more nitrogen conservative than arbuscular plants in boreal and tropical ecosystems, although differences in phosphorus use are less apparent outside temperate latitudes. Our findings bolster current theories of ecosystems rooted in mycorrhizal ecology and support the hypothesis that plant mycorrhizal association is linked to the evolution of plant nutrient economic strategies.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1906655116</identifier><identifier>PMID: 31659035</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptation ; Arbuscular mycorrhizas ; Biological evolution ; Biological Sciences ; Climate ; Climate effects ; complement ; Economics ; Ecosystem ; Ecosystems ; ectomycorrhizae ; Ectomycorrhizas ; evolution ; Flowers &amp; plants ; Fungi ; Hypotheses ; latitude ; leaves ; Microbiomes ; Mycorrhizae ; Niches ; Nitrogen ; Nitrogen - metabolism ; Nitrogen Fixation ; Nitrogenation ; Nutrient cycles ; Nutrients ; Phosphorus ; Phosphorus - metabolism ; phytobiome ; plant nitrogen content ; Plant species ; Plants - metabolism ; Plants - microbiology ; Robust control ; soil nutrients ; Species ; Symbiosis ; vesicular arbuscular mycorrhizae ; Woody plants</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-11, Vol.116 (46), p.23163-23168</ispartof><rights>Copyright National Academy of Sciences Nov 12, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-c40cc005948a23bfbc61c0090bdc97671db901755951720b4ff2e9be87bcf7cf3</citedby><cites>FETCH-LOGICAL-c476t-c40cc005948a23bfbc61c0090bdc97671db901755951720b4ff2e9be87bcf7cf3</cites><orcidid>0000-0002-2324-2518 ; 0000-0003-4035-7760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26861405$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26861405$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31659035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Averill, Colin</creatorcontrib><creatorcontrib>Bhatnagar, Jennifer M.</creatorcontrib><creatorcontrib>Dietze, Michael C.</creatorcontrib><creatorcontrib>Pearse, William D.</creatorcontrib><creatorcontrib>Kivlin, Stephanie N.</creatorcontrib><title>Global imprint of mycorrhizal fungi on whole-plant nutrient economics</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mycorrhizal fungi are critical members of the plant microbiome, forming a symbiosis with the roots of most plants on Earth. Most plant species partner with either arbuscular or ectomycorrhizal fungi, and these symbioses are thought to represent plant adaptations to fast and slow soil nutrient cycling rates. This generates a second hypothesis, that arbuscular and ectomycorrhizal plant species traits complement and reinforce these fungal strategies, resulting in nutrient acquisitive vs. conservative plant trait profiles. Here we analyzed 17,764 species level trait observations from 2,940 woody plant species to show that mycorrhizal plants differ systematically in nitrogen and phosphorus economic traits. Differences were clearest in temperate latitudes, where ectomycorrhizal plant species are more nitrogen use- and phosphorus use-conservative than arbuscular mycorrhizal species. This difference is reflected in both aboveground and belowground plant traits and is robust to controlling for evolutionary history, nitrogen fixation ability, deciduousness, latitude, and species climate niche. Furthermore, mycorrhizal effects are large and frequently similar to or greater in magnitude than the influence of plant nitrogen fixation ability or deciduous vs. evergreen leaf habit. Ectomycorrhizal plants are also more nitrogen conservative than arbuscular plants in boreal and tropical ecosystems, although differences in phosphorus use are less apparent outside temperate latitudes. Our findings bolster current theories of ecosystems rooted in mycorrhizal ecology and support the hypothesis that plant mycorrhizal association is linked to the evolution of plant nutrient economic strategies.</description><subject>Adaptation</subject><subject>Arbuscular mycorrhizas</subject><subject>Biological evolution</subject><subject>Biological Sciences</subject><subject>Climate</subject><subject>Climate effects</subject><subject>complement</subject><subject>Economics</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>ectomycorrhizae</subject><subject>Ectomycorrhizas</subject><subject>evolution</subject><subject>Flowers &amp; plants</subject><subject>Fungi</subject><subject>Hypotheses</subject><subject>latitude</subject><subject>leaves</subject><subject>Microbiomes</subject><subject>Mycorrhizae</subject><subject>Niches</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen Fixation</subject><subject>Nitrogenation</subject><subject>Nutrient cycles</subject><subject>Nutrients</subject><subject>Phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>phytobiome</subject><subject>plant nitrogen content</subject><subject>Plant species</subject><subject>Plants - metabolism</subject><subject>Plants - microbiology</subject><subject>Robust control</subject><subject>soil nutrients</subject><subject>Species</subject><subject>Symbiosis</subject><subject>vesicular arbuscular mycorrhizae</subject><subject>Woody plants</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtvFDEUhS0EIstCTQUaiYZmknv9HDdIKAoBKRIN1NbYa2e9mhkv9kxQ-PV4tWF5NLjw634-OteHkJcI5wiKXeynvpyjBimFQJSPyApBYyu5hsdkBUBV23HKz8izUnYAoEUHT8kZQyk0MLEiV9dDsv3QxHGf4zQ3KTTjvUs5b-OPeh2W6TY2aWq-b9Pg2_3QV2Za5hx93XiXpjRGV56TJ6Efin_xsK7J1w9XXy4_tjefrz9dvr9pHVdyrjM4ByA073rKbLBOYj1rsBunlVS4sRpQCaEFKgqWh0C9tr5T1gXlAluTd0fd_WJHv3HVRO4HU62Pfb43qY_m78oUt-Y23RnZCc2krAJvHwRy-rb4MpsxFueH2pdPSzFUMskpxY7-H2UIVEtWx5q8-QfdpSVP9ScOFBcUGapKXRwpl1Mp2YeTbwRzSNMc0jS_06wvXv_Z7on_FV8FXh2BXZlTPtWp7CRyEOwnjf-lQA</recordid><startdate>20191112</startdate><enddate>20191112</enddate><creator>Averill, Colin</creator><creator>Bhatnagar, Jennifer M.</creator><creator>Dietze, Michael C.</creator><creator>Pearse, William D.</creator><creator>Kivlin, Stephanie N.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2324-2518</orcidid><orcidid>https://orcid.org/0000-0003-4035-7760</orcidid></search><sort><creationdate>20191112</creationdate><title>Global imprint of mycorrhizal fungi on whole-plant nutrient economics</title><author>Averill, Colin ; Bhatnagar, Jennifer M. ; Dietze, Michael C. ; Pearse, William D. ; Kivlin, Stephanie N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-c40cc005948a23bfbc61c0090bdc97671db901755951720b4ff2e9be87bcf7cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>Arbuscular mycorrhizas</topic><topic>Biological evolution</topic><topic>Biological Sciences</topic><topic>Climate</topic><topic>Climate effects</topic><topic>complement</topic><topic>Economics</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>ectomycorrhizae</topic><topic>Ectomycorrhizas</topic><topic>evolution</topic><topic>Flowers &amp; plants</topic><topic>Fungi</topic><topic>Hypotheses</topic><topic>latitude</topic><topic>leaves</topic><topic>Microbiomes</topic><topic>Mycorrhizae</topic><topic>Niches</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen Fixation</topic><topic>Nitrogenation</topic><topic>Nutrient cycles</topic><topic>Nutrients</topic><topic>Phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>phytobiome</topic><topic>plant nitrogen content</topic><topic>Plant species</topic><topic>Plants - metabolism</topic><topic>Plants - microbiology</topic><topic>Robust control</topic><topic>soil nutrients</topic><topic>Species</topic><topic>Symbiosis</topic><topic>vesicular arbuscular mycorrhizae</topic><topic>Woody plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averill, Colin</creatorcontrib><creatorcontrib>Bhatnagar, Jennifer M.</creatorcontrib><creatorcontrib>Dietze, Michael C.</creatorcontrib><creatorcontrib>Pearse, William D.</creatorcontrib><creatorcontrib>Kivlin, Stephanie N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Averill, Colin</au><au>Bhatnagar, Jennifer M.</au><au>Dietze, Michael C.</au><au>Pearse, William D.</au><au>Kivlin, Stephanie N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global imprint of mycorrhizal fungi on whole-plant nutrient economics</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-11-12</date><risdate>2019</risdate><volume>116</volume><issue>46</issue><spage>23163</spage><epage>23168</epage><pages>23163-23168</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Mycorrhizal fungi are critical members of the plant microbiome, forming a symbiosis with the roots of most plants on Earth. Most plant species partner with either arbuscular or ectomycorrhizal fungi, and these symbioses are thought to represent plant adaptations to fast and slow soil nutrient cycling rates. This generates a second hypothesis, that arbuscular and ectomycorrhizal plant species traits complement and reinforce these fungal strategies, resulting in nutrient acquisitive vs. conservative plant trait profiles. Here we analyzed 17,764 species level trait observations from 2,940 woody plant species to show that mycorrhizal plants differ systematically in nitrogen and phosphorus economic traits. Differences were clearest in temperate latitudes, where ectomycorrhizal plant species are more nitrogen use- and phosphorus use-conservative than arbuscular mycorrhizal species. This difference is reflected in both aboveground and belowground plant traits and is robust to controlling for evolutionary history, nitrogen fixation ability, deciduousness, latitude, and species climate niche. Furthermore, mycorrhizal effects are large and frequently similar to or greater in magnitude than the influence of plant nitrogen fixation ability or deciduous vs. evergreen leaf habit. Ectomycorrhizal plants are also more nitrogen conservative than arbuscular plants in boreal and tropical ecosystems, although differences in phosphorus use are less apparent outside temperate latitudes. Our findings bolster current theories of ecosystems rooted in mycorrhizal ecology and support the hypothesis that plant mycorrhizal association is linked to the evolution of plant nutrient economic strategies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31659035</pmid><doi>10.1073/pnas.1906655116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2324-2518</orcidid><orcidid>https://orcid.org/0000-0003-4035-7760</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-11, Vol.116 (46), p.23163-23168
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6859366
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adaptation
Arbuscular mycorrhizas
Biological evolution
Biological Sciences
Climate
Climate effects
complement
Economics
Ecosystem
Ecosystems
ectomycorrhizae
Ectomycorrhizas
evolution
Flowers & plants
Fungi
Hypotheses
latitude
leaves
Microbiomes
Mycorrhizae
Niches
Nitrogen
Nitrogen - metabolism
Nitrogen Fixation
Nitrogenation
Nutrient cycles
Nutrients
Phosphorus
Phosphorus - metabolism
phytobiome
plant nitrogen content
Plant species
Plants - metabolism
Plants - microbiology
Robust control
soil nutrients
Species
Symbiosis
vesicular arbuscular mycorrhizae
Woody plants
title Global imprint of mycorrhizal fungi on whole-plant nutrient economics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20imprint%20of%20mycorrhizal%20fungi%20on%20whole-plant%20nutrient%20economics&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Averill,%20Colin&rft.date=2019-11-12&rft.volume=116&rft.issue=46&rft.spage=23163&rft.epage=23168&rft.pages=23163-23168&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1906655116&rft_dat=%3Cjstor_pubme%3E26861405%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314521317&rft_id=info:pmid/31659035&rft_jstor_id=26861405&rfr_iscdi=true