Quantitative Multilayer Cu(410) Structure and Relaxation Determined by QLEED
Industrially relevant catalytically active surfaces exhibit defects. These defects serve as active sites; expose incoming adsorbates to both high and low coordinated surface atoms; determine morphology, reactivity, energetics, and surface relaxation. These, in turn, affect crystal growth, oxidation,...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-11, Vol.9 (1), p.16882-8, Article 16882 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 1 |
container_start_page | 16882 |
container_title | Scientific reports |
container_volume | 9 |
creator | Ahmed, Rezwan Makino, Takamasa Gueriba, Jessiel Siaron Mizuno, Seigi Diño, Wilson Agerico Okada, Michio |
description | Industrially relevant catalytically active surfaces exhibit defects. These defects serve as active sites; expose incoming adsorbates to both high and low coordinated surface atoms; determine morphology, reactivity, energetics, and surface relaxation. These, in turn, affect crystal growth, oxidation, catalysis, and corrosion. Systematic experimental analyses of such surface defects pose challenges, esp., when they do not exhibit order. High Miller index surfaces can provide access to these features and information, albeit indirectly. Here, we show that with quantitative low-energy electron diffraction (QLEED) intensity analyses and density functional theory (DFT) calculations, we can visualize the local atomic configuration, the corresponding electron distribution, and local reactivity. The QLEED-determined Cu(410) structure (Pendry reliability factor
R
P
≃ 0.0797) exhibits alternating sequences of expansion (+) and contraction (
−
) (of the first 16 atomic interlayers) relative to the bulk-truncated interlayer spacing of ca. 0.437 Å. The corresponding electron distribution shows smoothening relative to the bulk-determined structure. These results should aid us to further gain an atomic-scale understanding of the nature of defects in materials. |
doi_str_mv | 10.1038/s41598-019-52986-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6858363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315096376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-86024af5810740dfba439bb5e76d96045b11baef478f1a9ae77fd8a3350e1a443</originalsourceid><addsrcrecordid>eNp9kU1P3EAMhkeoCBDlD3BAkXqBQ9qZzGculaplaSstqujHeeQkDgRlJ3Q-gP33nWUpUA71xZb8-LWtl5BDRt8zys2HIJisTUlZXcqqNqq82yJ7FRWyrHhVvXlR75KDEK5pjgwKVu-QXc50LqncI4uLBC4OEeJwi8V5GuMwwgp9MUvHgtGT4kf0qY3JYwGuK77jCPeZnVxxihH9cnDYFc2quFjM56dvyXYPY8CDx7xPfp3Nf86-lItvn7_OPi3KVgoaS6NoJaCXhlEtaNc3IHjdNBK16mqVz24YawB7oU3PoAbUuu8McC4pMhCC75OPG92b1Cyxa9FFD6O98cMS_MpOMNh_O264spfTrVVGGq54Fjh-FPDT74Qh2uUQWhxHcDilYCvOJK0V1yqj716h11PyLr-3poRWmoo1VW2o1k8heOyfjmHUrv2yG79s9ss--GXv8tDRyzeeRv66kwG-AUJuuUv0z7v_I_sHJsigQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314767046</pqid></control><display><type>article</type><title>Quantitative Multilayer Cu(410) Structure and Relaxation Determined by QLEED</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Ahmed, Rezwan ; Makino, Takamasa ; Gueriba, Jessiel Siaron ; Mizuno, Seigi ; Diño, Wilson Agerico ; Okada, Michio</creator><creatorcontrib>Ahmed, Rezwan ; Makino, Takamasa ; Gueriba, Jessiel Siaron ; Mizuno, Seigi ; Diño, Wilson Agerico ; Okada, Michio</creatorcontrib><description>Industrially relevant catalytically active surfaces exhibit defects. These defects serve as active sites; expose incoming adsorbates to both high and low coordinated surface atoms; determine morphology, reactivity, energetics, and surface relaxation. These, in turn, affect crystal growth, oxidation, catalysis, and corrosion. Systematic experimental analyses of such surface defects pose challenges, esp., when they do not exhibit order. High Miller index surfaces can provide access to these features and information, albeit indirectly. Here, we show that with quantitative low-energy electron diffraction (QLEED) intensity analyses and density functional theory (DFT) calculations, we can visualize the local atomic configuration, the corresponding electron distribution, and local reactivity. The QLEED-determined Cu(410) structure (Pendry reliability factor
R
P
≃ 0.0797) exhibits alternating sequences of expansion (+) and contraction (
−
) (of the first 16 atomic interlayers) relative to the bulk-truncated interlayer spacing of ca. 0.437 Å. The corresponding electron distribution shows smoothening relative to the bulk-determined structure. These results should aid us to further gain an atomic-scale understanding of the nature of defects in materials.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-52986-w</identifier><identifier>PMID: 31729405</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1035 ; 639/301/119/544 ; 639/301/930/12 ; Catalysis ; Contraction ; Crystal growth ; Defects ; Electron diffraction ; Humanities and Social Sciences ; multidisciplinary ; Oxidation ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2019-11, Vol.9 (1), p.16882-8, Article 16882</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-86024af5810740dfba439bb5e76d96045b11baef478f1a9ae77fd8a3350e1a443</citedby><cites>FETCH-LOGICAL-c540t-86024af5810740dfba439bb5e76d96045b11baef478f1a9ae77fd8a3350e1a443</cites><orcidid>0000-0001-6154-7681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858363/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858363/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31729405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Rezwan</creatorcontrib><creatorcontrib>Makino, Takamasa</creatorcontrib><creatorcontrib>Gueriba, Jessiel Siaron</creatorcontrib><creatorcontrib>Mizuno, Seigi</creatorcontrib><creatorcontrib>Diño, Wilson Agerico</creatorcontrib><creatorcontrib>Okada, Michio</creatorcontrib><title>Quantitative Multilayer Cu(410) Structure and Relaxation Determined by QLEED</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Industrially relevant catalytically active surfaces exhibit defects. These defects serve as active sites; expose incoming adsorbates to both high and low coordinated surface atoms; determine morphology, reactivity, energetics, and surface relaxation. These, in turn, affect crystal growth, oxidation, catalysis, and corrosion. Systematic experimental analyses of such surface defects pose challenges, esp., when they do not exhibit order. High Miller index surfaces can provide access to these features and information, albeit indirectly. Here, we show that with quantitative low-energy electron diffraction (QLEED) intensity analyses and density functional theory (DFT) calculations, we can visualize the local atomic configuration, the corresponding electron distribution, and local reactivity. The QLEED-determined Cu(410) structure (Pendry reliability factor
R
P
≃ 0.0797) exhibits alternating sequences of expansion (+) and contraction (
−
) (of the first 16 atomic interlayers) relative to the bulk-truncated interlayer spacing of ca. 0.437 Å. The corresponding electron distribution shows smoothening relative to the bulk-determined structure. These results should aid us to further gain an atomic-scale understanding of the nature of defects in materials.</description><subject>639/301/1034/1035</subject><subject>639/301/119/544</subject><subject>639/301/930/12</subject><subject>Catalysis</subject><subject>Contraction</subject><subject>Crystal growth</subject><subject>Defects</subject><subject>Electron diffraction</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Oxidation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1P3EAMhkeoCBDlD3BAkXqBQ9qZzGculaplaSstqujHeeQkDgRlJ3Q-gP33nWUpUA71xZb8-LWtl5BDRt8zys2HIJisTUlZXcqqNqq82yJ7FRWyrHhVvXlR75KDEK5pjgwKVu-QXc50LqncI4uLBC4OEeJwi8V5GuMwwgp9MUvHgtGT4kf0qY3JYwGuK77jCPeZnVxxihH9cnDYFc2quFjM56dvyXYPY8CDx7xPfp3Nf86-lItvn7_OPi3KVgoaS6NoJaCXhlEtaNc3IHjdNBK16mqVz24YawB7oU3PoAbUuu8McC4pMhCC75OPG92b1Cyxa9FFD6O98cMS_MpOMNh_O264spfTrVVGGq54Fjh-FPDT74Qh2uUQWhxHcDilYCvOJK0V1yqj716h11PyLr-3poRWmoo1VW2o1k8heOyfjmHUrv2yG79s9ss--GXv8tDRyzeeRv66kwG-AUJuuUv0z7v_I_sHJsigQw</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Ahmed, Rezwan</creator><creator>Makino, Takamasa</creator><creator>Gueriba, Jessiel Siaron</creator><creator>Mizuno, Seigi</creator><creator>Diño, Wilson Agerico</creator><creator>Okada, Michio</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6154-7681</orcidid></search><sort><creationdate>20191115</creationdate><title>Quantitative Multilayer Cu(410) Structure and Relaxation Determined by QLEED</title><author>Ahmed, Rezwan ; Makino, Takamasa ; Gueriba, Jessiel Siaron ; Mizuno, Seigi ; Diño, Wilson Agerico ; Okada, Michio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-86024af5810740dfba439bb5e76d96045b11baef478f1a9ae77fd8a3350e1a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1034/1035</topic><topic>639/301/119/544</topic><topic>639/301/930/12</topic><topic>Catalysis</topic><topic>Contraction</topic><topic>Crystal growth</topic><topic>Defects</topic><topic>Electron diffraction</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Oxidation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Rezwan</creatorcontrib><creatorcontrib>Makino, Takamasa</creatorcontrib><creatorcontrib>Gueriba, Jessiel Siaron</creatorcontrib><creatorcontrib>Mizuno, Seigi</creatorcontrib><creatorcontrib>Diño, Wilson Agerico</creatorcontrib><creatorcontrib>Okada, Michio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Rezwan</au><au>Makino, Takamasa</au><au>Gueriba, Jessiel Siaron</au><au>Mizuno, Seigi</au><au>Diño, Wilson Agerico</au><au>Okada, Michio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Multilayer Cu(410) Structure and Relaxation Determined by QLEED</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-11-15</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>16882</spage><epage>8</epage><pages>16882-8</pages><artnum>16882</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Industrially relevant catalytically active surfaces exhibit defects. These defects serve as active sites; expose incoming adsorbates to both high and low coordinated surface atoms; determine morphology, reactivity, energetics, and surface relaxation. These, in turn, affect crystal growth, oxidation, catalysis, and corrosion. Systematic experimental analyses of such surface defects pose challenges, esp., when they do not exhibit order. High Miller index surfaces can provide access to these features and information, albeit indirectly. Here, we show that with quantitative low-energy electron diffraction (QLEED) intensity analyses and density functional theory (DFT) calculations, we can visualize the local atomic configuration, the corresponding electron distribution, and local reactivity. The QLEED-determined Cu(410) structure (Pendry reliability factor
R
P
≃ 0.0797) exhibits alternating sequences of expansion (+) and contraction (
−
) (of the first 16 atomic interlayers) relative to the bulk-truncated interlayer spacing of ca. 0.437 Å. The corresponding electron distribution shows smoothening relative to the bulk-determined structure. These results should aid us to further gain an atomic-scale understanding of the nature of defects in materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31729405</pmid><doi>10.1038/s41598-019-52986-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6154-7681</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-11, Vol.9 (1), p.16882-8, Article 16882 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6858363 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/301/1034/1035 639/301/119/544 639/301/930/12 Catalysis Contraction Crystal growth Defects Electron diffraction Humanities and Social Sciences multidisciplinary Oxidation Science Science (multidisciplinary) |
title | Quantitative Multilayer Cu(410) Structure and Relaxation Determined by QLEED |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Multilayer%20Cu(410)%20Structure%20and%20Relaxation%20Determined%20by%20QLEED&rft.jtitle=Scientific%20reports&rft.au=Ahmed,%20Rezwan&rft.date=2019-11-15&rft.volume=9&rft.issue=1&rft.spage=16882&rft.epage=8&rft.pages=16882-8&rft.artnum=16882&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-52986-w&rft_dat=%3Cproquest_pubme%3E2315096376%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314767046&rft_id=info:pmid/31729405&rfr_iscdi=true |