Fast parameter inference in a biomechanical model of the left ventricle by using statistical emulation
A central problem in biomechanical studies of personalized human left ventricular modelling is estimating the material properties and biophysical parameters from in vivo clinical measurements in a timeframe that is suitable for use within a clinic. Understanding these properties can provide insight...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society Series C: Applied Statistics 2019-11, Vol.68 (5), p.1555-1576 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1576 |
---|---|
container_issue | 5 |
container_start_page | 1555 |
container_title | Journal of the Royal Statistical Society Series C: Applied Statistics |
container_volume | 68 |
creator | Davies, Vinny Noè, Umberto Lazarus, Alan Gao, Hao Macdonald, Benn Berry, Colin Luo, Xiaoyu Husmeier, Dirk |
description | A central problem in biomechanical studies of personalized human left ventricular modelling is estimating the material properties and biophysical parameters from in vivo clinical measurements in a timeframe that is suitable for use within a clinic. Understanding these properties can provide insight into heart function or dysfunction and help to inform personalized medicine. However, finding a solution to the differential equations which mathematically describe the kinematics and dynamics of the myocardium through numerical integration can be computationally expensive. To circumvent this issue, we use the concept of emulation to infer the myocardial properties of a healthy volunteer in a viable clinical timeframe by using in vivo magnetic resonance image data. Emulation methods avoid computationally expensive simulations from the left ventricular model by replacing the biomechanical model, which is defined in terms of explicit partial differential equations, with a surrogate model inferred from simulations generated before the arrival of a patient, vastly improving computational efficiency at the clinic. We compare and contrast two emulation strategies: emulation of the computational model outputs and emulation of the loss between the observed patient data and the computational model outputs. These strategies are tested with two interpolation methods, as well as two loss functions. The best combination of methods is found by comparing the accuracy of parameter inference on simulated data for each combination. This combination, using the output emulation method, with local Gaussian process interpolation and the Euclidean loss function, provides accurate parameter inference in both simulated and clinical data, with a reduction in the computational cost of about three orders of magnitude compared with numerical integration of the differential equations by using finite element discretization techniques. |
doi_str_mv | 10.1111/rssc.12374 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26820927</jstor_id><sourcerecordid>26820927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4474-4f25bfe12a79250f6906c3e9fb37b7f73eb29efabbf87456004043031a7d20993</originalsourceid><addsrcrecordid>eNp9kc2LFDEQxYMo7rh68S4EvIjQa7466VwEGVwVFgRXzyGdqexkSHfGJL0y_72ZnXVBD9YlKfJ7j0o9hF5SckFbvculuAvKuBKP0IoKqTo9KPkYrQjhfadZL87Qs1J2pBUl4ik641RJJrRaIX9pS8V7m-0EFTIOs4cMs4N2wxaPIU3gtnYOzkY8pQ1EnDyuW8ARfMW3MNccXAQ8HvBSwnyDS7U1lHongGmJrUvzc_TE21jgxf15jn5cfvy-_txdff30Zf3hqnNCKNEJz_rRA2VWtbGJl5pIx0H7katRecVhZBq8HUc_KNFLQgQRnHBq1YYRrfk5en_y3S_jBBt3HM9Gs89hsvlgkg3m75c5bM1NujVy6KUeRDN4c2-Q088FSjVTKA5itDOkpRjWVqclo3po6Ot_0F1a8ty-1yhCWwRKkka9PVEup1Iy-IdhKDHH-MwxPnMXX4PpCf4VIhz-Q5pv19frP5pXJ82u1JQfNEwObSNM8d-p26aB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301876760</pqid></control><display><type>article</type><title>Fast parameter inference in a biomechanical model of the left ventricle by using statistical emulation</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Davies, Vinny ; Noè, Umberto ; Lazarus, Alan ; Gao, Hao ; Macdonald, Benn ; Berry, Colin ; Luo, Xiaoyu ; Husmeier, Dirk</creator><creatorcontrib>Davies, Vinny ; Noè, Umberto ; Lazarus, Alan ; Gao, Hao ; Macdonald, Benn ; Berry, Colin ; Luo, Xiaoyu ; Husmeier, Dirk</creatorcontrib><description>A central problem in biomechanical studies of personalized human left ventricular modelling is estimating the material properties and biophysical parameters from in vivo clinical measurements in a timeframe that is suitable for use within a clinic. Understanding these properties can provide insight into heart function or dysfunction and help to inform personalized medicine. However, finding a solution to the differential equations which mathematically describe the kinematics and dynamics of the myocardium through numerical integration can be computationally expensive. To circumvent this issue, we use the concept of emulation to infer the myocardial properties of a healthy volunteer in a viable clinical timeframe by using in vivo magnetic resonance image data. Emulation methods avoid computationally expensive simulations from the left ventricular model by replacing the biomechanical model, which is defined in terms of explicit partial differential equations, with a surrogate model inferred from simulations generated before the arrival of a patient, vastly improving computational efficiency at the clinic. We compare and contrast two emulation strategies: emulation of the computational model outputs and emulation of the loss between the observed patient data and the computational model outputs. These strategies are tested with two interpolation methods, as well as two loss functions. The best combination of methods is found by comparing the accuracy of parameter inference on simulated data for each combination. This combination, using the output emulation method, with local Gaussian process interpolation and the Euclidean loss function, provides accurate parameter inference in both simulated and clinical data, with a reduction in the computational cost of about three orders of magnitude compared with numerical integration of the differential equations by using finite element discretization techniques.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/rssc.12374</identifier><identifier>PMID: 31762497</identifier><language>eng</language><publisher>Oxford: Wiley</publisher><subject>Biomechanics ; Computational efficiency ; Computer simulation ; Emulation ; Gaussian process ; Gaussian processes ; Heart function ; Holzapfel–Ogden constitutive law ; In vivo methods and tests ; Inference ; Interpolation ; Kinematics ; Left ventricle heart model ; Magnetic resonance imaging ; Material properties ; Mathematical models ; Myocardium ; Numerical integration ; Optimization ; Original ; Parameters ; Partial differential equations ; Precision medicine ; Simulation ; Statistical inference</subject><ispartof>Journal of the Royal Statistical Society Series C: Applied Statistics, 2019-11, Vol.68 (5), p.1555-1576</ispartof><rights>2019 The Authors</rights><rights>2019 The Authors Journal of the Royal Statistical Society: Series C (Applied Statistics) Published by John Wiley & Sons Ltd on behalf of the Royal Statistical Society</rights><rights>Copyright © 2019 The Royal Statistical Society and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4474-4f25bfe12a79250f6906c3e9fb37b7f73eb29efabbf87456004043031a7d20993</citedby><cites>FETCH-LOGICAL-c4474-4f25bfe12a79250f6906c3e9fb37b7f73eb29efabbf87456004043031a7d20993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26820927$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26820927$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Davies, Vinny</creatorcontrib><creatorcontrib>Noè, Umberto</creatorcontrib><creatorcontrib>Lazarus, Alan</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><creatorcontrib>Macdonald, Benn</creatorcontrib><creatorcontrib>Berry, Colin</creatorcontrib><creatorcontrib>Luo, Xiaoyu</creatorcontrib><creatorcontrib>Husmeier, Dirk</creatorcontrib><title>Fast parameter inference in a biomechanical model of the left ventricle by using statistical emulation</title><title>Journal of the Royal Statistical Society Series C: Applied Statistics</title><description>A central problem in biomechanical studies of personalized human left ventricular modelling is estimating the material properties and biophysical parameters from in vivo clinical measurements in a timeframe that is suitable for use within a clinic. Understanding these properties can provide insight into heart function or dysfunction and help to inform personalized medicine. However, finding a solution to the differential equations which mathematically describe the kinematics and dynamics of the myocardium through numerical integration can be computationally expensive. To circumvent this issue, we use the concept of emulation to infer the myocardial properties of a healthy volunteer in a viable clinical timeframe by using in vivo magnetic resonance image data. Emulation methods avoid computationally expensive simulations from the left ventricular model by replacing the biomechanical model, which is defined in terms of explicit partial differential equations, with a surrogate model inferred from simulations generated before the arrival of a patient, vastly improving computational efficiency at the clinic. We compare and contrast two emulation strategies: emulation of the computational model outputs and emulation of the loss between the observed patient data and the computational model outputs. These strategies are tested with two interpolation methods, as well as two loss functions. The best combination of methods is found by comparing the accuracy of parameter inference on simulated data for each combination. This combination, using the output emulation method, with local Gaussian process interpolation and the Euclidean loss function, provides accurate parameter inference in both simulated and clinical data, with a reduction in the computational cost of about three orders of magnitude compared with numerical integration of the differential equations by using finite element discretization techniques.</description><subject>Biomechanics</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Emulation</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>Heart function</subject><subject>Holzapfel–Ogden constitutive law</subject><subject>In vivo methods and tests</subject><subject>Inference</subject><subject>Interpolation</subject><subject>Kinematics</subject><subject>Left ventricle heart model</subject><subject>Magnetic resonance imaging</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Myocardium</subject><subject>Numerical integration</subject><subject>Optimization</subject><subject>Original</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Precision medicine</subject><subject>Simulation</subject><subject>Statistical inference</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kc2LFDEQxYMo7rh68S4EvIjQa7466VwEGVwVFgRXzyGdqexkSHfGJL0y_72ZnXVBD9YlKfJ7j0o9hF5SckFbvculuAvKuBKP0IoKqTo9KPkYrQjhfadZL87Qs1J2pBUl4ik641RJJrRaIX9pS8V7m-0EFTIOs4cMs4N2wxaPIU3gtnYOzkY8pQ1EnDyuW8ARfMW3MNccXAQ8HvBSwnyDS7U1lHongGmJrUvzc_TE21jgxf15jn5cfvy-_txdff30Zf3hqnNCKNEJz_rRA2VWtbGJl5pIx0H7katRecVhZBq8HUc_KNFLQgQRnHBq1YYRrfk5en_y3S_jBBt3HM9Gs89hsvlgkg3m75c5bM1NujVy6KUeRDN4c2-Q088FSjVTKA5itDOkpRjWVqclo3po6Ot_0F1a8ty-1yhCWwRKkka9PVEup1Iy-IdhKDHH-MwxPnMXX4PpCf4VIhz-Q5pv19frP5pXJ82u1JQfNEwObSNM8d-p26aB</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Davies, Vinny</creator><creator>Noè, Umberto</creator><creator>Lazarus, Alan</creator><creator>Gao, Hao</creator><creator>Macdonald, Benn</creator><creator>Berry, Colin</creator><creator>Luo, Xiaoyu</creator><creator>Husmeier, Dirk</creator><general>Wiley</general><general>Oxford University Press</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201911</creationdate><title>Fast parameter inference in a biomechanical model of the left ventricle by using statistical emulation</title><author>Davies, Vinny ; Noè, Umberto ; Lazarus, Alan ; Gao, Hao ; Macdonald, Benn ; Berry, Colin ; Luo, Xiaoyu ; Husmeier, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4474-4f25bfe12a79250f6906c3e9fb37b7f73eb29efabbf87456004043031a7d20993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomechanics</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Emulation</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>Heart function</topic><topic>Holzapfel–Ogden constitutive law</topic><topic>In vivo methods and tests</topic><topic>Inference</topic><topic>Interpolation</topic><topic>Kinematics</topic><topic>Left ventricle heart model</topic><topic>Magnetic resonance imaging</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Myocardium</topic><topic>Numerical integration</topic><topic>Optimization</topic><topic>Original</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Precision medicine</topic><topic>Simulation</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davies, Vinny</creatorcontrib><creatorcontrib>Noè, Umberto</creatorcontrib><creatorcontrib>Lazarus, Alan</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><creatorcontrib>Macdonald, Benn</creatorcontrib><creatorcontrib>Berry, Colin</creatorcontrib><creatorcontrib>Luo, Xiaoyu</creatorcontrib><creatorcontrib>Husmeier, Dirk</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies, Vinny</au><au>Noè, Umberto</au><au>Lazarus, Alan</au><au>Gao, Hao</au><au>Macdonald, Benn</au><au>Berry, Colin</au><au>Luo, Xiaoyu</au><au>Husmeier, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast parameter inference in a biomechanical model of the left ventricle by using statistical emulation</atitle><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle><date>2019-11</date><risdate>2019</risdate><volume>68</volume><issue>5</issue><spage>1555</spage><epage>1576</epage><pages>1555-1576</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><abstract>A central problem in biomechanical studies of personalized human left ventricular modelling is estimating the material properties and biophysical parameters from in vivo clinical measurements in a timeframe that is suitable for use within a clinic. Understanding these properties can provide insight into heart function or dysfunction and help to inform personalized medicine. However, finding a solution to the differential equations which mathematically describe the kinematics and dynamics of the myocardium through numerical integration can be computationally expensive. To circumvent this issue, we use the concept of emulation to infer the myocardial properties of a healthy volunteer in a viable clinical timeframe by using in vivo magnetic resonance image data. Emulation methods avoid computationally expensive simulations from the left ventricular model by replacing the biomechanical model, which is defined in terms of explicit partial differential equations, with a surrogate model inferred from simulations generated before the arrival of a patient, vastly improving computational efficiency at the clinic. We compare and contrast two emulation strategies: emulation of the computational model outputs and emulation of the loss between the observed patient data and the computational model outputs. These strategies are tested with two interpolation methods, as well as two loss functions. The best combination of methods is found by comparing the accuracy of parameter inference on simulated data for each combination. This combination, using the output emulation method, with local Gaussian process interpolation and the Euclidean loss function, provides accurate parameter inference in both simulated and clinical data, with a reduction in the computational cost of about three orders of magnitude compared with numerical integration of the differential equations by using finite element discretization techniques.</abstract><cop>Oxford</cop><pub>Wiley</pub><pmid>31762497</pmid><doi>10.1111/rssc.12374</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9254 |
ispartof | Journal of the Royal Statistical Society Series C: Applied Statistics, 2019-11, Vol.68 (5), p.1555-1576 |
issn | 0035-9254 1467-9876 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856984 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Biomechanics Computational efficiency Computer simulation Emulation Gaussian process Gaussian processes Heart function Holzapfel–Ogden constitutive law In vivo methods and tests Inference Interpolation Kinematics Left ventricle heart model Magnetic resonance imaging Material properties Mathematical models Myocardium Numerical integration Optimization Original Parameters Partial differential equations Precision medicine Simulation Statistical inference |
title | Fast parameter inference in a biomechanical model of the left ventricle by using statistical emulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20parameter%20inference%20in%20a%20biomechanical%20model%20of%20the%20left%20ventricle%20by%20using%20statistical%20emulation&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society%20Series%20C:%20Applied%20Statistics&rft.au=Davies,%20Vinny&rft.date=2019-11&rft.volume=68&rft.issue=5&rft.spage=1555&rft.epage=1576&rft.pages=1555-1576&rft.issn=0035-9254&rft.eissn=1467-9876&rft_id=info:doi/10.1111/rssc.12374&rft_dat=%3Cjstor_pubme%3E26820927%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301876760&rft_id=info:pmid/31762497&rft_jstor_id=26820927&rfr_iscdi=true |