The structural and biochemical impacts of monomerizing human acetylcholinesterase
Serving a critical role in neurotransmission, human acetylcholinesterase (hAChE) is the target of organophosphate nerve agents. Hence, there is an active interest in studying the mechanism of inhibition and recovery of enzymatic activity, which could lead to better countermeasures against nerve agen...
Gespeichert in:
Veröffentlicht in: | Protein science 2019-06, Vol.28 (6), p.1106-1114 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1114 |
---|---|
container_issue | 6 |
container_start_page | 1106 |
container_title | Protein science |
container_volume | 28 |
creator | Bester, Stephanie M. Adipietro, Kaylin A. Funk, Vanessa L. Myslinski, James M. Keul, Nicholas D. Cheung, Jonah Wilder, Paul T. Wood, Zachary A. Weber, David J. Height, Jude J. Pegan, Scott D. |
description | Serving a critical role in neurotransmission, human acetylcholinesterase (hAChE) is the target of organophosphate nerve agents. Hence, there is an active interest in studying the mechanism of inhibition and recovery of enzymatic activity, which could lead to better countermeasures against nerve agents. As hAChE is found in different oligomeric assemblies, certain approaches to studying it have been problematic. Herein, we examine the biochemical and structural impact of monomerizing hAChE by using two mutations: L380R/F535K. The activities of monomeric hAChE L380R/F535K and dimeric hAChE were determined to be comparable utilizing a modified Ellman's assay. To investigate the influence of subunit–subunit interactions on the structure of hAChE, a 2.1 Å X‐ray crystallographic structure was determined. Apart from minor shifts along the dimer interface, the overall structure of the hAChE L380R/F535K mutant is similar to that of dimeric hAChE. To probe whether the plasticity of the active site was overtly impacted by monomerizing hAChE, the kinetic constants of (PR/S) − VX (ethyl({2‐[bis(propan‐2‐yl)amino]ethyl}sulfanyl)(methyl)phosphinate) inhibition and subsequent rescue of hAChE L380R/F535K activity with HI‐6 (1‐(2′‐hydroxyiminomethyl‐1′‐pyridinium)‐3‐(4′‐carbamoyl‐1‐pyridinium)) were determined and found to be comparable to those of dimeric hAChE. Thus, hAChE L380R/F535K could be used as a substitute for dimeric hAChE when experimentally probing the ability of the hAChE active site to accommodate future nerve agent threats or judge the ability of new therapeutics to access the active site.
PDB Code(s): 6O69; |
doi_str_mv | 10.1002/pro.3625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210961387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4655-8670aeba08ee1ca3a924851538ab6bda403eb662be42f996074b16e159f3ae83</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoModq2Cv0AGvfFm2nzMnEluBCl-FAqtshfehUz2TCdlJlmTjLL-erNubVXwKhzy8JyPl5DnjJ4wSvnpNoYTAbx9QFasAVVLBV8ekhVVwGopQB6RJyndUEobxsVjciSoUqJTfEU-rUesUo6LzUs0U2X8pupdsCPOzpbazVtjc6rCUM3Bhxmj--H8dTUus_GVsZh3kx3D5DymjNEkfEoeDWZK-Oz2PSbr9-_WZx_ri8sP52dvL2rbQNvWEjpqsDdUIjJrhFG8kS1rhTQ99BvTUIE9AO-x4YNSQLumZ4CsVYMwKMUxeXPQbpd-xo1Fn8v8ehvdbOJOB-P03z_ejfo6fNMgW-igK4KXB0FI2elkXUY72uA92qxZ23UMaIFe33aJ4etSVtSzSxanyXgMS9Kcs_2Rhdz7Xv2D3oQl-nKCQnEBTJaL3wttDClFHO4mZlTvsyx10PssC_rizw3vwN_hFaA-AN_dhLv_ivTV58tfwp92rqmW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2223618379</pqid></control><display><type>article</type><title>The structural and biochemical impacts of monomerizing human acetylcholinesterase</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bester, Stephanie M. ; Adipietro, Kaylin A. ; Funk, Vanessa L. ; Myslinski, James M. ; Keul, Nicholas D. ; Cheung, Jonah ; Wilder, Paul T. ; Wood, Zachary A. ; Weber, David J. ; Height, Jude J. ; Pegan, Scott D.</creator><creatorcontrib>Bester, Stephanie M. ; Adipietro, Kaylin A. ; Funk, Vanessa L. ; Myslinski, James M. ; Keul, Nicholas D. ; Cheung, Jonah ; Wilder, Paul T. ; Wood, Zachary A. ; Weber, David J. ; Height, Jude J. ; Pegan, Scott D. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Serving a critical role in neurotransmission, human acetylcholinesterase (hAChE) is the target of organophosphate nerve agents. Hence, there is an active interest in studying the mechanism of inhibition and recovery of enzymatic activity, which could lead to better countermeasures against nerve agents. As hAChE is found in different oligomeric assemblies, certain approaches to studying it have been problematic. Herein, we examine the biochemical and structural impact of monomerizing hAChE by using two mutations: L380R/F535K. The activities of monomeric hAChE L380R/F535K and dimeric hAChE were determined to be comparable utilizing a modified Ellman's assay. To investigate the influence of subunit–subunit interactions on the structure of hAChE, a 2.1 Å X‐ray crystallographic structure was determined. Apart from minor shifts along the dimer interface, the overall structure of the hAChE L380R/F535K mutant is similar to that of dimeric hAChE. To probe whether the plasticity of the active site was overtly impacted by monomerizing hAChE, the kinetic constants of (PR/S) − VX (ethyl({2‐[bis(propan‐2‐yl)amino]ethyl}sulfanyl)(methyl)phosphinate) inhibition and subsequent rescue of hAChE L380R/F535K activity with HI‐6 (1‐(2′‐hydroxyiminomethyl‐1′‐pyridinium)‐3‐(4′‐carbamoyl‐1‐pyridinium)) were determined and found to be comparable to those of dimeric hAChE. Thus, hAChE L380R/F535K could be used as a substitute for dimeric hAChE when experimentally probing the ability of the hAChE active site to accommodate future nerve agent threats or judge the ability of new therapeutics to access the active site.
PDB Code(s): 6O69;</description><identifier>ISSN: 0961-8368</identifier><identifier>ISSN: 1469-896X</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3625</identifier><identifier>PMID: 30993792</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Acetylcholinesterase ; Acetylcholinesterase - chemistry ; Acetylcholinesterase - genetics ; Acetylcholinesterase - metabolism ; Binding Sites ; Crystal structure ; Crystallography ; Dimers ; Enzymatic activity ; Full‐Length Paper ; Full‐Length Papers ; Humans ; Inhibition ; Models, Molecular ; Molecular structure ; Mutation ; nerve agent ; Nerve agents ; Neurotransmission ; oligomerization ; organophosphate ; Organophosphates ; Protein Conformation ; Pyridinium</subject><ispartof>Protein science, 2019-06, Vol.28 (6), p.1106-1114</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc. on behalf of The Protein Society.</rights><rights>2019 The Authors. Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.</rights><rights>2019 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4655-8670aeba08ee1ca3a924851538ab6bda403eb662be42f996074b16e159f3ae83</citedby><cites>FETCH-LOGICAL-c4655-8670aeba08ee1ca3a924851538ab6bda403eb662be42f996074b16e159f3ae83</cites><orcidid>0000-0002-2958-5319 ; 0000000229585319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856767/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856767/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30993792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1577160$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bester, Stephanie M.</creatorcontrib><creatorcontrib>Adipietro, Kaylin A.</creatorcontrib><creatorcontrib>Funk, Vanessa L.</creatorcontrib><creatorcontrib>Myslinski, James M.</creatorcontrib><creatorcontrib>Keul, Nicholas D.</creatorcontrib><creatorcontrib>Cheung, Jonah</creatorcontrib><creatorcontrib>Wilder, Paul T.</creatorcontrib><creatorcontrib>Wood, Zachary A.</creatorcontrib><creatorcontrib>Weber, David J.</creatorcontrib><creatorcontrib>Height, Jude J.</creatorcontrib><creatorcontrib>Pegan, Scott D.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>The structural and biochemical impacts of monomerizing human acetylcholinesterase</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Serving a critical role in neurotransmission, human acetylcholinesterase (hAChE) is the target of organophosphate nerve agents. Hence, there is an active interest in studying the mechanism of inhibition and recovery of enzymatic activity, which could lead to better countermeasures against nerve agents. As hAChE is found in different oligomeric assemblies, certain approaches to studying it have been problematic. Herein, we examine the biochemical and structural impact of monomerizing hAChE by using two mutations: L380R/F535K. The activities of monomeric hAChE L380R/F535K and dimeric hAChE were determined to be comparable utilizing a modified Ellman's assay. To investigate the influence of subunit–subunit interactions on the structure of hAChE, a 2.1 Å X‐ray crystallographic structure was determined. Apart from minor shifts along the dimer interface, the overall structure of the hAChE L380R/F535K mutant is similar to that of dimeric hAChE. To probe whether the plasticity of the active site was overtly impacted by monomerizing hAChE, the kinetic constants of (PR/S) − VX (ethyl({2‐[bis(propan‐2‐yl)amino]ethyl}sulfanyl)(methyl)phosphinate) inhibition and subsequent rescue of hAChE L380R/F535K activity with HI‐6 (1‐(2′‐hydroxyiminomethyl‐1′‐pyridinium)‐3‐(4′‐carbamoyl‐1‐pyridinium)) were determined and found to be comparable to those of dimeric hAChE. Thus, hAChE L380R/F535K could be used as a substitute for dimeric hAChE when experimentally probing the ability of the hAChE active site to accommodate future nerve agent threats or judge the ability of new therapeutics to access the active site.
PDB Code(s): 6O69;</description><subject>Acetylcholinesterase</subject><subject>Acetylcholinesterase - chemistry</subject><subject>Acetylcholinesterase - genetics</subject><subject>Acetylcholinesterase - metabolism</subject><subject>Binding Sites</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Dimers</subject><subject>Enzymatic activity</subject><subject>Full‐Length Paper</subject><subject>Full‐Length Papers</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>nerve agent</subject><subject>Nerve agents</subject><subject>Neurotransmission</subject><subject>oligomerization</subject><subject>organophosphate</subject><subject>Organophosphates</subject><subject>Protein Conformation</subject><subject>Pyridinium</subject><issn>0961-8368</issn><issn>1469-896X</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEUhoModq2Cv0AGvfFm2nzMnEluBCl-FAqtshfehUz2TCdlJlmTjLL-erNubVXwKhzy8JyPl5DnjJ4wSvnpNoYTAbx9QFasAVVLBV8ekhVVwGopQB6RJyndUEobxsVjciSoUqJTfEU-rUesUo6LzUs0U2X8pupdsCPOzpbazVtjc6rCUM3Bhxmj--H8dTUus_GVsZh3kx3D5DymjNEkfEoeDWZK-Oz2PSbr9-_WZx_ri8sP52dvL2rbQNvWEjpqsDdUIjJrhFG8kS1rhTQ99BvTUIE9AO-x4YNSQLumZ4CsVYMwKMUxeXPQbpd-xo1Fn8v8ehvdbOJOB-P03z_ejfo6fNMgW-igK4KXB0FI2elkXUY72uA92qxZ23UMaIFe33aJ4etSVtSzSxanyXgMS9Kcs_2Rhdz7Xv2D3oQl-nKCQnEBTJaL3wttDClFHO4mZlTvsyx10PssC_rizw3vwN_hFaA-AN_dhLv_ivTV58tfwp92rqmW</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Bester, Stephanie M.</creator><creator>Adipietro, Kaylin A.</creator><creator>Funk, Vanessa L.</creator><creator>Myslinski, James M.</creator><creator>Keul, Nicholas D.</creator><creator>Cheung, Jonah</creator><creator>Wilder, Paul T.</creator><creator>Wood, Zachary A.</creator><creator>Weber, David J.</creator><creator>Height, Jude J.</creator><creator>Pegan, Scott D.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>The Protein Society</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2958-5319</orcidid><orcidid>https://orcid.org/0000000229585319</orcidid></search><sort><creationdate>201906</creationdate><title>The structural and biochemical impacts of monomerizing human acetylcholinesterase</title><author>Bester, Stephanie M. ; Adipietro, Kaylin A. ; Funk, Vanessa L. ; Myslinski, James M. ; Keul, Nicholas D. ; Cheung, Jonah ; Wilder, Paul T. ; Wood, Zachary A. ; Weber, David J. ; Height, Jude J. ; Pegan, Scott D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4655-8670aeba08ee1ca3a924851538ab6bda403eb662be42f996074b16e159f3ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetylcholinesterase</topic><topic>Acetylcholinesterase - chemistry</topic><topic>Acetylcholinesterase - genetics</topic><topic>Acetylcholinesterase - metabolism</topic><topic>Binding Sites</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Dimers</topic><topic>Enzymatic activity</topic><topic>Full‐Length Paper</topic><topic>Full‐Length Papers</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>nerve agent</topic><topic>Nerve agents</topic><topic>Neurotransmission</topic><topic>oligomerization</topic><topic>organophosphate</topic><topic>Organophosphates</topic><topic>Protein Conformation</topic><topic>Pyridinium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bester, Stephanie M.</creatorcontrib><creatorcontrib>Adipietro, Kaylin A.</creatorcontrib><creatorcontrib>Funk, Vanessa L.</creatorcontrib><creatorcontrib>Myslinski, James M.</creatorcontrib><creatorcontrib>Keul, Nicholas D.</creatorcontrib><creatorcontrib>Cheung, Jonah</creatorcontrib><creatorcontrib>Wilder, Paul T.</creatorcontrib><creatorcontrib>Wood, Zachary A.</creatorcontrib><creatorcontrib>Weber, David J.</creatorcontrib><creatorcontrib>Height, Jude J.</creatorcontrib><creatorcontrib>Pegan, Scott D.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bester, Stephanie M.</au><au>Adipietro, Kaylin A.</au><au>Funk, Vanessa L.</au><au>Myslinski, James M.</au><au>Keul, Nicholas D.</au><au>Cheung, Jonah</au><au>Wilder, Paul T.</au><au>Wood, Zachary A.</au><au>Weber, David J.</au><au>Height, Jude J.</au><au>Pegan, Scott D.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structural and biochemical impacts of monomerizing human acetylcholinesterase</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2019-06</date><risdate>2019</risdate><volume>28</volume><issue>6</issue><spage>1106</spage><epage>1114</epage><pages>1106-1114</pages><issn>0961-8368</issn><issn>1469-896X</issn><eissn>1469-896X</eissn><abstract>Serving a critical role in neurotransmission, human acetylcholinesterase (hAChE) is the target of organophosphate nerve agents. Hence, there is an active interest in studying the mechanism of inhibition and recovery of enzymatic activity, which could lead to better countermeasures against nerve agents. As hAChE is found in different oligomeric assemblies, certain approaches to studying it have been problematic. Herein, we examine the biochemical and structural impact of monomerizing hAChE by using two mutations: L380R/F535K. The activities of monomeric hAChE L380R/F535K and dimeric hAChE were determined to be comparable utilizing a modified Ellman's assay. To investigate the influence of subunit–subunit interactions on the structure of hAChE, a 2.1 Å X‐ray crystallographic structure was determined. Apart from minor shifts along the dimer interface, the overall structure of the hAChE L380R/F535K mutant is similar to that of dimeric hAChE. To probe whether the plasticity of the active site was overtly impacted by monomerizing hAChE, the kinetic constants of (PR/S) − VX (ethyl({2‐[bis(propan‐2‐yl)amino]ethyl}sulfanyl)(methyl)phosphinate) inhibition and subsequent rescue of hAChE L380R/F535K activity with HI‐6 (1‐(2′‐hydroxyiminomethyl‐1′‐pyridinium)‐3‐(4′‐carbamoyl‐1‐pyridinium)) were determined and found to be comparable to those of dimeric hAChE. Thus, hAChE L380R/F535K could be used as a substitute for dimeric hAChE when experimentally probing the ability of the hAChE active site to accommodate future nerve agent threats or judge the ability of new therapeutics to access the active site.
PDB Code(s): 6O69;</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30993792</pmid><doi>10.1002/pro.3625</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2958-5319</orcidid><orcidid>https://orcid.org/0000000229585319</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2019-06, Vol.28 (6), p.1106-1114 |
issn | 0961-8368 1469-896X 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856767 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acetylcholinesterase Acetylcholinesterase - chemistry Acetylcholinesterase - genetics Acetylcholinesterase - metabolism Binding Sites Crystal structure Crystallography Dimers Enzymatic activity Full‐Length Paper Full‐Length Papers Humans Inhibition Models, Molecular Molecular structure Mutation nerve agent Nerve agents Neurotransmission oligomerization organophosphate Organophosphates Protein Conformation Pyridinium |
title | The structural and biochemical impacts of monomerizing human acetylcholinesterase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structural%20and%20biochemical%20impacts%20of%20monomerizing%20human%20acetylcholinesterase&rft.jtitle=Protein%20science&rft.au=Bester,%20Stephanie%20M.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-06&rft.volume=28&rft.issue=6&rft.spage=1106&rft.epage=1114&rft.pages=1106-1114&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3625&rft_dat=%3Cproquest_pubme%3E2210961387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2223618379&rft_id=info:pmid/30993792&rfr_iscdi=true |