The structural and biochemical impacts of monomerizing human acetylcholinesterase

Serving a critical role in neurotransmission, human acetylcholinesterase (hAChE) is the target of organophosphate nerve agents. Hence, there is an active interest in studying the mechanism of inhibition and recovery of enzymatic activity, which could lead to better countermeasures against nerve agen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2019-06, Vol.28 (6), p.1106-1114
Hauptverfasser: Bester, Stephanie M., Adipietro, Kaylin A., Funk, Vanessa L., Myslinski, James M., Keul, Nicholas D., Cheung, Jonah, Wilder, Paul T., Wood, Zachary A., Weber, David J., Height, Jude J., Pegan, Scott D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1114
container_issue 6
container_start_page 1106
container_title Protein science
container_volume 28
creator Bester, Stephanie M.
Adipietro, Kaylin A.
Funk, Vanessa L.
Myslinski, James M.
Keul, Nicholas D.
Cheung, Jonah
Wilder, Paul T.
Wood, Zachary A.
Weber, David J.
Height, Jude J.
Pegan, Scott D.
description Serving a critical role in neurotransmission, human acetylcholinesterase (hAChE) is the target of organophosphate nerve agents. Hence, there is an active interest in studying the mechanism of inhibition and recovery of enzymatic activity, which could lead to better countermeasures against nerve agents. As hAChE is found in different oligomeric assemblies, certain approaches to studying it have been problematic. Herein, we examine the biochemical and structural impact of monomerizing hAChE by using two mutations: L380R/F535K. The activities of monomeric hAChE L380R/F535K and dimeric hAChE were determined to be comparable utilizing a modified Ellman's assay. To investigate the influence of subunit–subunit interactions on the structure of hAChE, a 2.1 Å X‐ray crystallographic structure was determined. Apart from minor shifts along the dimer interface, the overall structure of the hAChE L380R/F535K mutant is similar to that of dimeric hAChE. To probe whether the plasticity of the active site was overtly impacted by monomerizing hAChE, the kinetic constants of (PR/S) − VX (ethyl({2‐[bis(propan‐2‐yl)amino]ethyl}sulfanyl)(methyl)phosphinate) inhibition and subsequent rescue of hAChE L380R/F535K activity with HI‐6 (1‐(2′‐hydroxyiminomethyl‐1′‐pyridinium)‐3‐(4′‐carbamoyl‐1‐pyridinium)) were determined and found to be comparable to those of dimeric hAChE. Thus, hAChE L380R/F535K could be used as a substitute for dimeric hAChE when experimentally probing the ability of the hAChE active site to accommodate future nerve agent threats or judge the ability of new therapeutics to access the active site. PDB Code(s): 6O69;
doi_str_mv 10.1002/pro.3625
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210961387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4655-8670aeba08ee1ca3a924851538ab6bda403eb662be42f996074b16e159f3ae83</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoModq2Cv0AGvfFm2nzMnEluBCl-FAqtshfehUz2TCdlJlmTjLL-erNubVXwKhzy8JyPl5DnjJ4wSvnpNoYTAbx9QFasAVVLBV8ekhVVwGopQB6RJyndUEobxsVjciSoUqJTfEU-rUesUo6LzUs0U2X8pupdsCPOzpbazVtjc6rCUM3Bhxmj--H8dTUus_GVsZh3kx3D5DymjNEkfEoeDWZK-Oz2PSbr9-_WZx_ri8sP52dvL2rbQNvWEjpqsDdUIjJrhFG8kS1rhTQ99BvTUIE9AO-x4YNSQLumZ4CsVYMwKMUxeXPQbpd-xo1Fn8v8ehvdbOJOB-P03z_ejfo6fNMgW-igK4KXB0FI2elkXUY72uA92qxZ23UMaIFe33aJ4etSVtSzSxanyXgMS9Kcs_2Rhdz7Xv2D3oQl-nKCQnEBTJaL3wttDClFHO4mZlTvsyx10PssC_rizw3vwN_hFaA-AN_dhLv_ivTV58tfwp92rqmW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2223618379</pqid></control><display><type>article</type><title>The structural and biochemical impacts of monomerizing human acetylcholinesterase</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bester, Stephanie M. ; Adipietro, Kaylin A. ; Funk, Vanessa L. ; Myslinski, James M. ; Keul, Nicholas D. ; Cheung, Jonah ; Wilder, Paul T. ; Wood, Zachary A. ; Weber, David J. ; Height, Jude J. ; Pegan, Scott D.</creator><creatorcontrib>Bester, Stephanie M. ; Adipietro, Kaylin A. ; Funk, Vanessa L. ; Myslinski, James M. ; Keul, Nicholas D. ; Cheung, Jonah ; Wilder, Paul T. ; Wood, Zachary A. ; Weber, David J. ; Height, Jude J. ; Pegan, Scott D. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Serving a critical role in neurotransmission, human acetylcholinesterase (hAChE) is the target of organophosphate nerve agents. Hence, there is an active interest in studying the mechanism of inhibition and recovery of enzymatic activity, which could lead to better countermeasures against nerve agents. As hAChE is found in different oligomeric assemblies, certain approaches to studying it have been problematic. Herein, we examine the biochemical and structural impact of monomerizing hAChE by using two mutations: L380R/F535K. The activities of monomeric hAChE L380R/F535K and dimeric hAChE were determined to be comparable utilizing a modified Ellman's assay. To investigate the influence of subunit–subunit interactions on the structure of hAChE, a 2.1 Å X‐ray crystallographic structure was determined. Apart from minor shifts along the dimer interface, the overall structure of the hAChE L380R/F535K mutant is similar to that of dimeric hAChE. To probe whether the plasticity of the active site was overtly impacted by monomerizing hAChE, the kinetic constants of (PR/S) − VX (ethyl({2‐[bis(propan‐2‐yl)amino]ethyl}sulfanyl)(methyl)phosphinate) inhibition and subsequent rescue of hAChE L380R/F535K activity with HI‐6 (1‐(2′‐hydroxyiminomethyl‐1′‐pyridinium)‐3‐(4′‐carbamoyl‐1‐pyridinium)) were determined and found to be comparable to those of dimeric hAChE. Thus, hAChE L380R/F535K could be used as a substitute for dimeric hAChE when experimentally probing the ability of the hAChE active site to accommodate future nerve agent threats or judge the ability of new therapeutics to access the active site. PDB Code(s): 6O69;</description><identifier>ISSN: 0961-8368</identifier><identifier>ISSN: 1469-896X</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3625</identifier><identifier>PMID: 30993792</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acetylcholinesterase ; Acetylcholinesterase - chemistry ; Acetylcholinesterase - genetics ; Acetylcholinesterase - metabolism ; Binding Sites ; Crystal structure ; Crystallography ; Dimers ; Enzymatic activity ; Full‐Length Paper ; Full‐Length Papers ; Humans ; Inhibition ; Models, Molecular ; Molecular structure ; Mutation ; nerve agent ; Nerve agents ; Neurotransmission ; oligomerization ; organophosphate ; Organophosphates ; Protein Conformation ; Pyridinium</subject><ispartof>Protein science, 2019-06, Vol.28 (6), p.1106-1114</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc. on behalf of The Protein Society.</rights><rights>2019 The Authors. Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.</rights><rights>2019 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4655-8670aeba08ee1ca3a924851538ab6bda403eb662be42f996074b16e159f3ae83</citedby><cites>FETCH-LOGICAL-c4655-8670aeba08ee1ca3a924851538ab6bda403eb662be42f996074b16e159f3ae83</cites><orcidid>0000-0002-2958-5319 ; 0000000229585319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856767/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856767/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30993792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1577160$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bester, Stephanie M.</creatorcontrib><creatorcontrib>Adipietro, Kaylin A.</creatorcontrib><creatorcontrib>Funk, Vanessa L.</creatorcontrib><creatorcontrib>Myslinski, James M.</creatorcontrib><creatorcontrib>Keul, Nicholas D.</creatorcontrib><creatorcontrib>Cheung, Jonah</creatorcontrib><creatorcontrib>Wilder, Paul T.</creatorcontrib><creatorcontrib>Wood, Zachary A.</creatorcontrib><creatorcontrib>Weber, David J.</creatorcontrib><creatorcontrib>Height, Jude J.</creatorcontrib><creatorcontrib>Pegan, Scott D.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>The structural and biochemical impacts of monomerizing human acetylcholinesterase</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Serving a critical role in neurotransmission, human acetylcholinesterase (hAChE) is the target of organophosphate nerve agents. Hence, there is an active interest in studying the mechanism of inhibition and recovery of enzymatic activity, which could lead to better countermeasures against nerve agents. As hAChE is found in different oligomeric assemblies, certain approaches to studying it have been problematic. Herein, we examine the biochemical and structural impact of monomerizing hAChE by using two mutations: L380R/F535K. The activities of monomeric hAChE L380R/F535K and dimeric hAChE were determined to be comparable utilizing a modified Ellman's assay. To investigate the influence of subunit–subunit interactions on the structure of hAChE, a 2.1 Å X‐ray crystallographic structure was determined. Apart from minor shifts along the dimer interface, the overall structure of the hAChE L380R/F535K mutant is similar to that of dimeric hAChE. To probe whether the plasticity of the active site was overtly impacted by monomerizing hAChE, the kinetic constants of (PR/S) − VX (ethyl({2‐[bis(propan‐2‐yl)amino]ethyl}sulfanyl)(methyl)phosphinate) inhibition and subsequent rescue of hAChE L380R/F535K activity with HI‐6 (1‐(2′‐hydroxyiminomethyl‐1′‐pyridinium)‐3‐(4′‐carbamoyl‐1‐pyridinium)) were determined and found to be comparable to those of dimeric hAChE. Thus, hAChE L380R/F535K could be used as a substitute for dimeric hAChE when experimentally probing the ability of the hAChE active site to accommodate future nerve agent threats or judge the ability of new therapeutics to access the active site. PDB Code(s): 6O69;</description><subject>Acetylcholinesterase</subject><subject>Acetylcholinesterase - chemistry</subject><subject>Acetylcholinesterase - genetics</subject><subject>Acetylcholinesterase - metabolism</subject><subject>Binding Sites</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Dimers</subject><subject>Enzymatic activity</subject><subject>Full‐Length Paper</subject><subject>Full‐Length Papers</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>nerve agent</subject><subject>Nerve agents</subject><subject>Neurotransmission</subject><subject>oligomerization</subject><subject>organophosphate</subject><subject>Organophosphates</subject><subject>Protein Conformation</subject><subject>Pyridinium</subject><issn>0961-8368</issn><issn>1469-896X</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEUhoModq2Cv0AGvfFm2nzMnEluBCl-FAqtshfehUz2TCdlJlmTjLL-erNubVXwKhzy8JyPl5DnjJ4wSvnpNoYTAbx9QFasAVVLBV8ekhVVwGopQB6RJyndUEobxsVjciSoUqJTfEU-rUesUo6LzUs0U2X8pupdsCPOzpbazVtjc6rCUM3Bhxmj--H8dTUus_GVsZh3kx3D5DymjNEkfEoeDWZK-Oz2PSbr9-_WZx_ri8sP52dvL2rbQNvWEjpqsDdUIjJrhFG8kS1rhTQ99BvTUIE9AO-x4YNSQLumZ4CsVYMwKMUxeXPQbpd-xo1Fn8v8ehvdbOJOB-P03z_ejfo6fNMgW-igK4KXB0FI2elkXUY72uA92qxZ23UMaIFe33aJ4etSVtSzSxanyXgMS9Kcs_2Rhdz7Xv2D3oQl-nKCQnEBTJaL3wttDClFHO4mZlTvsyx10PssC_rizw3vwN_hFaA-AN_dhLv_ivTV58tfwp92rqmW</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Bester, Stephanie M.</creator><creator>Adipietro, Kaylin A.</creator><creator>Funk, Vanessa L.</creator><creator>Myslinski, James M.</creator><creator>Keul, Nicholas D.</creator><creator>Cheung, Jonah</creator><creator>Wilder, Paul T.</creator><creator>Wood, Zachary A.</creator><creator>Weber, David J.</creator><creator>Height, Jude J.</creator><creator>Pegan, Scott D.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>The Protein Society</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2958-5319</orcidid><orcidid>https://orcid.org/0000000229585319</orcidid></search><sort><creationdate>201906</creationdate><title>The structural and biochemical impacts of monomerizing human acetylcholinesterase</title><author>Bester, Stephanie M. ; Adipietro, Kaylin A. ; Funk, Vanessa L. ; Myslinski, James M. ; Keul, Nicholas D. ; Cheung, Jonah ; Wilder, Paul T. ; Wood, Zachary A. ; Weber, David J. ; Height, Jude J. ; Pegan, Scott D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4655-8670aeba08ee1ca3a924851538ab6bda403eb662be42f996074b16e159f3ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetylcholinesterase</topic><topic>Acetylcholinesterase - chemistry</topic><topic>Acetylcholinesterase - genetics</topic><topic>Acetylcholinesterase - metabolism</topic><topic>Binding Sites</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Dimers</topic><topic>Enzymatic activity</topic><topic>Full‐Length Paper</topic><topic>Full‐Length Papers</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>nerve agent</topic><topic>Nerve agents</topic><topic>Neurotransmission</topic><topic>oligomerization</topic><topic>organophosphate</topic><topic>Organophosphates</topic><topic>Protein Conformation</topic><topic>Pyridinium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bester, Stephanie M.</creatorcontrib><creatorcontrib>Adipietro, Kaylin A.</creatorcontrib><creatorcontrib>Funk, Vanessa L.</creatorcontrib><creatorcontrib>Myslinski, James M.</creatorcontrib><creatorcontrib>Keul, Nicholas D.</creatorcontrib><creatorcontrib>Cheung, Jonah</creatorcontrib><creatorcontrib>Wilder, Paul T.</creatorcontrib><creatorcontrib>Wood, Zachary A.</creatorcontrib><creatorcontrib>Weber, David J.</creatorcontrib><creatorcontrib>Height, Jude J.</creatorcontrib><creatorcontrib>Pegan, Scott D.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bester, Stephanie M.</au><au>Adipietro, Kaylin A.</au><au>Funk, Vanessa L.</au><au>Myslinski, James M.</au><au>Keul, Nicholas D.</au><au>Cheung, Jonah</au><au>Wilder, Paul T.</au><au>Wood, Zachary A.</au><au>Weber, David J.</au><au>Height, Jude J.</au><au>Pegan, Scott D.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structural and biochemical impacts of monomerizing human acetylcholinesterase</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2019-06</date><risdate>2019</risdate><volume>28</volume><issue>6</issue><spage>1106</spage><epage>1114</epage><pages>1106-1114</pages><issn>0961-8368</issn><issn>1469-896X</issn><eissn>1469-896X</eissn><abstract>Serving a critical role in neurotransmission, human acetylcholinesterase (hAChE) is the target of organophosphate nerve agents. Hence, there is an active interest in studying the mechanism of inhibition and recovery of enzymatic activity, which could lead to better countermeasures against nerve agents. As hAChE is found in different oligomeric assemblies, certain approaches to studying it have been problematic. Herein, we examine the biochemical and structural impact of monomerizing hAChE by using two mutations: L380R/F535K. The activities of monomeric hAChE L380R/F535K and dimeric hAChE were determined to be comparable utilizing a modified Ellman's assay. To investigate the influence of subunit–subunit interactions on the structure of hAChE, a 2.1 Å X‐ray crystallographic structure was determined. Apart from minor shifts along the dimer interface, the overall structure of the hAChE L380R/F535K mutant is similar to that of dimeric hAChE. To probe whether the plasticity of the active site was overtly impacted by monomerizing hAChE, the kinetic constants of (PR/S) − VX (ethyl({2‐[bis(propan‐2‐yl)amino]ethyl}sulfanyl)(methyl)phosphinate) inhibition and subsequent rescue of hAChE L380R/F535K activity with HI‐6 (1‐(2′‐hydroxyiminomethyl‐1′‐pyridinium)‐3‐(4′‐carbamoyl‐1‐pyridinium)) were determined and found to be comparable to those of dimeric hAChE. Thus, hAChE L380R/F535K could be used as a substitute for dimeric hAChE when experimentally probing the ability of the hAChE active site to accommodate future nerve agent threats or judge the ability of new therapeutics to access the active site. PDB Code(s): 6O69;</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30993792</pmid><doi>10.1002/pro.3625</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2958-5319</orcidid><orcidid>https://orcid.org/0000000229585319</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2019-06, Vol.28 (6), p.1106-1114
issn 0961-8368
1469-896X
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856767
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetylcholinesterase
Acetylcholinesterase - chemistry
Acetylcholinesterase - genetics
Acetylcholinesterase - metabolism
Binding Sites
Crystal structure
Crystallography
Dimers
Enzymatic activity
Full‐Length Paper
Full‐Length Papers
Humans
Inhibition
Models, Molecular
Molecular structure
Mutation
nerve agent
Nerve agents
Neurotransmission
oligomerization
organophosphate
Organophosphates
Protein Conformation
Pyridinium
title The structural and biochemical impacts of monomerizing human acetylcholinesterase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structural%20and%20biochemical%20impacts%20of%20monomerizing%20human%20acetylcholinesterase&rft.jtitle=Protein%20science&rft.au=Bester,%20Stephanie%20M.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-06&rft.volume=28&rft.issue=6&rft.spage=1106&rft.epage=1114&rft.pages=1106-1114&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3625&rft_dat=%3Cproquest_pubme%3E2210961387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2223618379&rft_id=info:pmid/30993792&rfr_iscdi=true