Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK

Predicting the 3D structure of protein interactions remains a challenge in the field of computational structural biology. This is in part due to difficulties in sampling the complex energy landscape of multiple interacting flexible polypeptide chains. Coarse-graining approaches, which reduce the num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2019-11, Vol.15 (11), p.6358-6367
Hauptverfasser: Roel-Touris, Jorge, Don, Charleen G, V. Honorato, Rodrigo, Rodrigues, João P. G. L. M, Bonvin, Alexandre M. J. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6367
container_issue 11
container_start_page 6358
container_title Journal of chemical theory and computation
container_volume 15
creator Roel-Touris, Jorge
Don, Charleen G
V. Honorato, Rodrigo
Rodrigues, João P. G. L. M
Bonvin, Alexandre M. J. J
description Predicting the 3D structure of protein interactions remains a challenge in the field of computational structural biology. This is in part due to difficulties in sampling the complex energy landscape of multiple interacting flexible polypeptide chains. Coarse-graining approaches, which reduce the number of degrees of freedom of the system, help address this limitation by smoothing the energy landscape, allowing an easier identification of the global energy minimum. They also accelerate the calculations, allowing for modeling larger assemblies. Here, we present the implementation of the MARTINI coarse-grained force field for proteins into HADDOCK, our integrative modeling platform. Docking and refinement are performed at the coarse-grained level, and the resulting models are then converted back to atomistic resolution through a distance restraints-guided morphing procedure. Our protocol, tested on the largest complexes of the protein docking benchmark 5, shows an overall ∼7-fold speed increase compared to standard all-atom calculations, while maintaining a similar accuracy and yielding substantially more near-native solutions. To showcase the potential of our method, we performed simultaneous 7 body docking to model the 1:6 KaiC-KaiB complex, integrating mutagenesis and hydrogen/deuterium exchange data from mass spectrometry with symmetry restraints, and validated the resulting models against a recently published cryo-EM structure.
doi_str_mv 10.1021/acs.jctc.9b00310
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6854652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316411134</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-8fb50f106e1976bca4ae4ee1be561961ec035a1627acf6295b9f66308a5df2b23</originalsourceid><addsrcrecordid>eNp1kc1PAjEQxRujUfy4e2zi1cVOu627HkwQPyBiuOi56ZZZKFm22C4a_3sXQRIPnmaS-b03M3mEnAPrAuNwZWzszm1ju3nBmAC2Rzog0zzJFVf7ux6yI3Ic47xFRMrFITkSIEXOJesQPcIY6TDSFx_whva9CRGTp2BcjRM6rBucBtO4D2yBCVaunlJf0pEJU6R3zi98hXZVmUB7MeKiqBxG-umaGR307u_H_edTclCaKuLZtp6Qt8eH1_4gGY2fhv3eKDGpyJokKwvJSmAKIb9WhTWpwRQRCpQK2g_QMiENKH5tbKl4Lou8VEqwzMhJyQsuTsjtxne5KhY4sVg3wVR6GdzChC_tjdN_J7Wb6an_0CqTqZJrg4utQfDvK4yNnvtVqNubNRegUgAQaUuxDWWDjzFgudsATK8j0W0keh2J3kbSSi43kp_Jr-e_-Dehyo46</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316411134</pqid></control><display><type>article</type><title>Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK</title><source>ACS Publications</source><creator>Roel-Touris, Jorge ; Don, Charleen G ; V. Honorato, Rodrigo ; Rodrigues, João P. G. L. M ; Bonvin, Alexandre M. J. J</creator><creatorcontrib>Roel-Touris, Jorge ; Don, Charleen G ; V. Honorato, Rodrigo ; Rodrigues, João P. G. L. M ; Bonvin, Alexandre M. J. J</creatorcontrib><description>Predicting the 3D structure of protein interactions remains a challenge in the field of computational structural biology. This is in part due to difficulties in sampling the complex energy landscape of multiple interacting flexible polypeptide chains. Coarse-graining approaches, which reduce the number of degrees of freedom of the system, help address this limitation by smoothing the energy landscape, allowing an easier identification of the global energy minimum. They also accelerate the calculations, allowing for modeling larger assemblies. Here, we present the implementation of the MARTINI coarse-grained force field for proteins into HADDOCK, our integrative modeling platform. Docking and refinement are performed at the coarse-grained level, and the resulting models are then converted back to atomistic resolution through a distance restraints-guided morphing procedure. Our protocol, tested on the largest complexes of the protein docking benchmark 5, shows an overall ∼7-fold speed increase compared to standard all-atom calculations, while maintaining a similar accuracy and yielding substantially more near-native solutions. To showcase the potential of our method, we performed simultaneous 7 body docking to model the 1:6 KaiC-KaiB complex, integrating mutagenesis and hydrogen/deuterium exchange data from mass spectrometry with symmetry restraints, and validated the resulting models against a recently published cryo-EM structure.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.9b00310</identifier><identifier>PMID: 31539250</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Assemblies ; Constraints ; Deuterium ; Docking ; Granulation ; Haddock ; Mass spectrometry ; Morphing ; Proteins</subject><ispartof>Journal of chemical theory and computation, 2019-11, Vol.15 (11), p.6358-6367</ispartof><rights>Copyright American Chemical Society Nov 12, 2019</rights><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-8fb50f106e1976bca4ae4ee1be561961ec035a1627acf6295b9f66308a5df2b23</citedby><cites>FETCH-LOGICAL-a438t-8fb50f106e1976bca4ae4ee1be561961ec035a1627acf6295b9f66308a5df2b23</cites><orcidid>0000-0001-7369-1322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.9b00310$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.9b00310$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Roel-Touris, Jorge</creatorcontrib><creatorcontrib>Don, Charleen G</creatorcontrib><creatorcontrib>V. Honorato, Rodrigo</creatorcontrib><creatorcontrib>Rodrigues, João P. G. L. M</creatorcontrib><creatorcontrib>Bonvin, Alexandre M. J. J</creatorcontrib><title>Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Predicting the 3D structure of protein interactions remains a challenge in the field of computational structural biology. This is in part due to difficulties in sampling the complex energy landscape of multiple interacting flexible polypeptide chains. Coarse-graining approaches, which reduce the number of degrees of freedom of the system, help address this limitation by smoothing the energy landscape, allowing an easier identification of the global energy minimum. They also accelerate the calculations, allowing for modeling larger assemblies. Here, we present the implementation of the MARTINI coarse-grained force field for proteins into HADDOCK, our integrative modeling platform. Docking and refinement are performed at the coarse-grained level, and the resulting models are then converted back to atomistic resolution through a distance restraints-guided morphing procedure. Our protocol, tested on the largest complexes of the protein docking benchmark 5, shows an overall ∼7-fold speed increase compared to standard all-atom calculations, while maintaining a similar accuracy and yielding substantially more near-native solutions. To showcase the potential of our method, we performed simultaneous 7 body docking to model the 1:6 KaiC-KaiB complex, integrating mutagenesis and hydrogen/deuterium exchange data from mass spectrometry with symmetry restraints, and validated the resulting models against a recently published cryo-EM structure.</description><subject>Assemblies</subject><subject>Constraints</subject><subject>Deuterium</subject><subject>Docking</subject><subject>Granulation</subject><subject>Haddock</subject><subject>Mass spectrometry</subject><subject>Morphing</subject><subject>Proteins</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1PAjEQxRujUfy4e2zi1cVOu627HkwQPyBiuOi56ZZZKFm22C4a_3sXQRIPnmaS-b03M3mEnAPrAuNwZWzszm1ju3nBmAC2Rzog0zzJFVf7ux6yI3Ic47xFRMrFITkSIEXOJesQPcIY6TDSFx_whva9CRGTp2BcjRM6rBucBtO4D2yBCVaunlJf0pEJU6R3zi98hXZVmUB7MeKiqBxG-umaGR307u_H_edTclCaKuLZtp6Qt8eH1_4gGY2fhv3eKDGpyJokKwvJSmAKIb9WhTWpwRQRCpQK2g_QMiENKH5tbKl4Lou8VEqwzMhJyQsuTsjtxne5KhY4sVg3wVR6GdzChC_tjdN_J7Wb6an_0CqTqZJrg4utQfDvK4yNnvtVqNubNRegUgAQaUuxDWWDjzFgudsATK8j0W0keh2J3kbSSi43kp_Jr-e_-Dehyo46</recordid><startdate>20191112</startdate><enddate>20191112</enddate><creator>Roel-Touris, Jorge</creator><creator>Don, Charleen G</creator><creator>V. Honorato, Rodrigo</creator><creator>Rodrigues, João P. G. L. M</creator><creator>Bonvin, Alexandre M. J. J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7369-1322</orcidid></search><sort><creationdate>20191112</creationdate><title>Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK</title><author>Roel-Touris, Jorge ; Don, Charleen G ; V. Honorato, Rodrigo ; Rodrigues, João P. G. L. M ; Bonvin, Alexandre M. J. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-8fb50f106e1976bca4ae4ee1be561961ec035a1627acf6295b9f66308a5df2b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assemblies</topic><topic>Constraints</topic><topic>Deuterium</topic><topic>Docking</topic><topic>Granulation</topic><topic>Haddock</topic><topic>Mass spectrometry</topic><topic>Morphing</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roel-Touris, Jorge</creatorcontrib><creatorcontrib>Don, Charleen G</creatorcontrib><creatorcontrib>V. Honorato, Rodrigo</creatorcontrib><creatorcontrib>Rodrigues, João P. G. L. M</creatorcontrib><creatorcontrib>Bonvin, Alexandre M. J. J</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roel-Touris, Jorge</au><au>Don, Charleen G</au><au>V. Honorato, Rodrigo</au><au>Rodrigues, João P. G. L. M</au><au>Bonvin, Alexandre M. J. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2019-11-12</date><risdate>2019</risdate><volume>15</volume><issue>11</issue><spage>6358</spage><epage>6367</epage><pages>6358-6367</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Predicting the 3D structure of protein interactions remains a challenge in the field of computational structural biology. This is in part due to difficulties in sampling the complex energy landscape of multiple interacting flexible polypeptide chains. Coarse-graining approaches, which reduce the number of degrees of freedom of the system, help address this limitation by smoothing the energy landscape, allowing an easier identification of the global energy minimum. They also accelerate the calculations, allowing for modeling larger assemblies. Here, we present the implementation of the MARTINI coarse-grained force field for proteins into HADDOCK, our integrative modeling platform. Docking and refinement are performed at the coarse-grained level, and the resulting models are then converted back to atomistic resolution through a distance restraints-guided morphing procedure. Our protocol, tested on the largest complexes of the protein docking benchmark 5, shows an overall ∼7-fold speed increase compared to standard all-atom calculations, while maintaining a similar accuracy and yielding substantially more near-native solutions. To showcase the potential of our method, we performed simultaneous 7 body docking to model the 1:6 KaiC-KaiB complex, integrating mutagenesis and hydrogen/deuterium exchange data from mass spectrometry with symmetry restraints, and validated the resulting models against a recently published cryo-EM structure.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>31539250</pmid><doi>10.1021/acs.jctc.9b00310</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7369-1322</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2019-11, Vol.15 (11), p.6358-6367
issn 1549-9618
1549-9626
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6854652
source ACS Publications
subjects Assemblies
Constraints
Deuterium
Docking
Granulation
Haddock
Mass spectrometry
Morphing
Proteins
title Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Less%20Is%20More:%20Coarse-Grained%20Integrative%20Modeling%20of%20Large%20Biomolecular%20Assemblies%20with%20HADDOCK&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Roel-Touris,%20Jorge&rft.date=2019-11-12&rft.volume=15&rft.issue=11&rft.spage=6358&rft.epage=6367&rft.pages=6358-6367&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.9b00310&rft_dat=%3Cproquest_pubme%3E2316411134%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316411134&rft_id=info:pmid/31539250&rfr_iscdi=true