Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK
Predicting the 3D structure of protein interactions remains a challenge in the field of computational structural biology. This is in part due to difficulties in sampling the complex energy landscape of multiple interacting flexible polypeptide chains. Coarse-graining approaches, which reduce the num...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2019-11, Vol.15 (11), p.6358-6367 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6367 |
---|---|
container_issue | 11 |
container_start_page | 6358 |
container_title | Journal of chemical theory and computation |
container_volume | 15 |
creator | Roel-Touris, Jorge Don, Charleen G V. Honorato, Rodrigo Rodrigues, João P. G. L. M Bonvin, Alexandre M. J. J |
description | Predicting the 3D structure of protein interactions remains a challenge in the field of computational structural biology. This is in part due to difficulties in sampling the complex energy landscape of multiple interacting flexible polypeptide chains. Coarse-graining approaches, which reduce the number of degrees of freedom of the system, help address this limitation by smoothing the energy landscape, allowing an easier identification of the global energy minimum. They also accelerate the calculations, allowing for modeling larger assemblies. Here, we present the implementation of the MARTINI coarse-grained force field for proteins into HADDOCK, our integrative modeling platform. Docking and refinement are performed at the coarse-grained level, and the resulting models are then converted back to atomistic resolution through a distance restraints-guided morphing procedure. Our protocol, tested on the largest complexes of the protein docking benchmark 5, shows an overall ∼7-fold speed increase compared to standard all-atom calculations, while maintaining a similar accuracy and yielding substantially more near-native solutions. To showcase the potential of our method, we performed simultaneous 7 body docking to model the 1:6 KaiC-KaiB complex, integrating mutagenesis and hydrogen/deuterium exchange data from mass spectrometry with symmetry restraints, and validated the resulting models against a recently published cryo-EM structure. |
doi_str_mv | 10.1021/acs.jctc.9b00310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6854652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316411134</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-8fb50f106e1976bca4ae4ee1be561961ec035a1627acf6295b9f66308a5df2b23</originalsourceid><addsrcrecordid>eNp1kc1PAjEQxRujUfy4e2zi1cVOu627HkwQPyBiuOi56ZZZKFm22C4a_3sXQRIPnmaS-b03M3mEnAPrAuNwZWzszm1ju3nBmAC2Rzog0zzJFVf7ux6yI3Ic47xFRMrFITkSIEXOJesQPcIY6TDSFx_whva9CRGTp2BcjRM6rBucBtO4D2yBCVaunlJf0pEJU6R3zi98hXZVmUB7MeKiqBxG-umaGR307u_H_edTclCaKuLZtp6Qt8eH1_4gGY2fhv3eKDGpyJokKwvJSmAKIb9WhTWpwRQRCpQK2g_QMiENKH5tbKl4Lou8VEqwzMhJyQsuTsjtxne5KhY4sVg3wVR6GdzChC_tjdN_J7Wb6an_0CqTqZJrg4utQfDvK4yNnvtVqNubNRegUgAQaUuxDWWDjzFgudsATK8j0W0keh2J3kbSSi43kp_Jr-e_-Dehyo46</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316411134</pqid></control><display><type>article</type><title>Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK</title><source>ACS Publications</source><creator>Roel-Touris, Jorge ; Don, Charleen G ; V. Honorato, Rodrigo ; Rodrigues, João P. G. L. M ; Bonvin, Alexandre M. J. J</creator><creatorcontrib>Roel-Touris, Jorge ; Don, Charleen G ; V. Honorato, Rodrigo ; Rodrigues, João P. G. L. M ; Bonvin, Alexandre M. J. J</creatorcontrib><description>Predicting the 3D structure of protein interactions remains a challenge in the field of computational structural biology. This is in part due to difficulties in sampling the complex energy landscape of multiple interacting flexible polypeptide chains. Coarse-graining approaches, which reduce the number of degrees of freedom of the system, help address this limitation by smoothing the energy landscape, allowing an easier identification of the global energy minimum. They also accelerate the calculations, allowing for modeling larger assemblies. Here, we present the implementation of the MARTINI coarse-grained force field for proteins into HADDOCK, our integrative modeling platform. Docking and refinement are performed at the coarse-grained level, and the resulting models are then converted back to atomistic resolution through a distance restraints-guided morphing procedure. Our protocol, tested on the largest complexes of the protein docking benchmark 5, shows an overall ∼7-fold speed increase compared to standard all-atom calculations, while maintaining a similar accuracy and yielding substantially more near-native solutions. To showcase the potential of our method, we performed simultaneous 7 body docking to model the 1:6 KaiC-KaiB complex, integrating mutagenesis and hydrogen/deuterium exchange data from mass spectrometry with symmetry restraints, and validated the resulting models against a recently published cryo-EM structure.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.9b00310</identifier><identifier>PMID: 31539250</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Assemblies ; Constraints ; Deuterium ; Docking ; Granulation ; Haddock ; Mass spectrometry ; Morphing ; Proteins</subject><ispartof>Journal of chemical theory and computation, 2019-11, Vol.15 (11), p.6358-6367</ispartof><rights>Copyright American Chemical Society Nov 12, 2019</rights><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-8fb50f106e1976bca4ae4ee1be561961ec035a1627acf6295b9f66308a5df2b23</citedby><cites>FETCH-LOGICAL-a438t-8fb50f106e1976bca4ae4ee1be561961ec035a1627acf6295b9f66308a5df2b23</cites><orcidid>0000-0001-7369-1322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.9b00310$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.9b00310$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Roel-Touris, Jorge</creatorcontrib><creatorcontrib>Don, Charleen G</creatorcontrib><creatorcontrib>V. Honorato, Rodrigo</creatorcontrib><creatorcontrib>Rodrigues, João P. G. L. M</creatorcontrib><creatorcontrib>Bonvin, Alexandre M. J. J</creatorcontrib><title>Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Predicting the 3D structure of protein interactions remains a challenge in the field of computational structural biology. This is in part due to difficulties in sampling the complex energy landscape of multiple interacting flexible polypeptide chains. Coarse-graining approaches, which reduce the number of degrees of freedom of the system, help address this limitation by smoothing the energy landscape, allowing an easier identification of the global energy minimum. They also accelerate the calculations, allowing for modeling larger assemblies. Here, we present the implementation of the MARTINI coarse-grained force field for proteins into HADDOCK, our integrative modeling platform. Docking and refinement are performed at the coarse-grained level, and the resulting models are then converted back to atomistic resolution through a distance restraints-guided morphing procedure. Our protocol, tested on the largest complexes of the protein docking benchmark 5, shows an overall ∼7-fold speed increase compared to standard all-atom calculations, while maintaining a similar accuracy and yielding substantially more near-native solutions. To showcase the potential of our method, we performed simultaneous 7 body docking to model the 1:6 KaiC-KaiB complex, integrating mutagenesis and hydrogen/deuterium exchange data from mass spectrometry with symmetry restraints, and validated the resulting models against a recently published cryo-EM structure.</description><subject>Assemblies</subject><subject>Constraints</subject><subject>Deuterium</subject><subject>Docking</subject><subject>Granulation</subject><subject>Haddock</subject><subject>Mass spectrometry</subject><subject>Morphing</subject><subject>Proteins</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1PAjEQxRujUfy4e2zi1cVOu627HkwQPyBiuOi56ZZZKFm22C4a_3sXQRIPnmaS-b03M3mEnAPrAuNwZWzszm1ju3nBmAC2Rzog0zzJFVf7ux6yI3Ic47xFRMrFITkSIEXOJesQPcIY6TDSFx_whva9CRGTp2BcjRM6rBucBtO4D2yBCVaunlJf0pEJU6R3zi98hXZVmUB7MeKiqBxG-umaGR307u_H_edTclCaKuLZtp6Qt8eH1_4gGY2fhv3eKDGpyJokKwvJSmAKIb9WhTWpwRQRCpQK2g_QMiENKH5tbKl4Lou8VEqwzMhJyQsuTsjtxne5KhY4sVg3wVR6GdzChC_tjdN_J7Wb6an_0CqTqZJrg4utQfDvK4yNnvtVqNubNRegUgAQaUuxDWWDjzFgudsATK8j0W0keh2J3kbSSi43kp_Jr-e_-Dehyo46</recordid><startdate>20191112</startdate><enddate>20191112</enddate><creator>Roel-Touris, Jorge</creator><creator>Don, Charleen G</creator><creator>V. Honorato, Rodrigo</creator><creator>Rodrigues, João P. G. L. M</creator><creator>Bonvin, Alexandre M. J. J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7369-1322</orcidid></search><sort><creationdate>20191112</creationdate><title>Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK</title><author>Roel-Touris, Jorge ; Don, Charleen G ; V. Honorato, Rodrigo ; Rodrigues, João P. G. L. M ; Bonvin, Alexandre M. J. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-8fb50f106e1976bca4ae4ee1be561961ec035a1627acf6295b9f66308a5df2b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assemblies</topic><topic>Constraints</topic><topic>Deuterium</topic><topic>Docking</topic><topic>Granulation</topic><topic>Haddock</topic><topic>Mass spectrometry</topic><topic>Morphing</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roel-Touris, Jorge</creatorcontrib><creatorcontrib>Don, Charleen G</creatorcontrib><creatorcontrib>V. Honorato, Rodrigo</creatorcontrib><creatorcontrib>Rodrigues, João P. G. L. M</creatorcontrib><creatorcontrib>Bonvin, Alexandre M. J. J</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roel-Touris, Jorge</au><au>Don, Charleen G</au><au>V. Honorato, Rodrigo</au><au>Rodrigues, João P. G. L. M</au><au>Bonvin, Alexandre M. J. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2019-11-12</date><risdate>2019</risdate><volume>15</volume><issue>11</issue><spage>6358</spage><epage>6367</epage><pages>6358-6367</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Predicting the 3D structure of protein interactions remains a challenge in the field of computational structural biology. This is in part due to difficulties in sampling the complex energy landscape of multiple interacting flexible polypeptide chains. Coarse-graining approaches, which reduce the number of degrees of freedom of the system, help address this limitation by smoothing the energy landscape, allowing an easier identification of the global energy minimum. They also accelerate the calculations, allowing for modeling larger assemblies. Here, we present the implementation of the MARTINI coarse-grained force field for proteins into HADDOCK, our integrative modeling platform. Docking and refinement are performed at the coarse-grained level, and the resulting models are then converted back to atomistic resolution through a distance restraints-guided morphing procedure. Our protocol, tested on the largest complexes of the protein docking benchmark 5, shows an overall ∼7-fold speed increase compared to standard all-atom calculations, while maintaining a similar accuracy and yielding substantially more near-native solutions. To showcase the potential of our method, we performed simultaneous 7 body docking to model the 1:6 KaiC-KaiB complex, integrating mutagenesis and hydrogen/deuterium exchange data from mass spectrometry with symmetry restraints, and validated the resulting models against a recently published cryo-EM structure.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>31539250</pmid><doi>10.1021/acs.jctc.9b00310</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7369-1322</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2019-11, Vol.15 (11), p.6358-6367 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6854652 |
source | ACS Publications |
subjects | Assemblies Constraints Deuterium Docking Granulation Haddock Mass spectrometry Morphing Proteins |
title | Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Less%20Is%20More:%20Coarse-Grained%20Integrative%20Modeling%20of%20Large%20Biomolecular%20Assemblies%20with%20HADDOCK&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Roel-Touris,%20Jorge&rft.date=2019-11-12&rft.volume=15&rft.issue=11&rft.spage=6358&rft.epage=6367&rft.pages=6358-6367&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.9b00310&rft_dat=%3Cproquest_pubme%3E2316411134%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316411134&rft_id=info:pmid/31539250&rfr_iscdi=true |