Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes
Abstract Motivation Nuclear delineation and phenotypic profiling are important steps in the automated analysis of histology sections. However, these are challenging problems due to (i) technical variations (e.g. fixation, staining) that originate as a result of sample preparation; (ii) biological he...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2019-11, Vol.35 (22), p.4860-4861 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4861 |
---|---|
container_issue | 22 |
container_start_page | 4860 |
container_title | Bioinformatics |
container_volume | 35 |
creator | Khoshdeli, Mina Winkelmaier, Garrett Parvin, Bahram |
description | Abstract
Motivation
Nuclear delineation and phenotypic profiling are important steps in the automated analysis of histology sections. However, these are challenging problems due to (i) technical variations (e.g. fixation, staining) that originate as a result of sample preparation; (ii) biological heterogeneity (e.g. vesicular versus high chromatin phenotypes, nuclear atypia) and (iii) overlapping nuclei. This Application-Note couples contextual information about the cellular organization with the individual signature of nuclei to improve performance. As a result, routine delineation of nuclei in H&E stained histology sections is enabled for either computer-aided pathology or integration with genome-wide molecular data.
Results
The method has been evaluated on two independent datasets. One dataset originates from our lab and includes H&E stained sections of brain and breast samples. The second dataset is publicly available through IEEE with a focus on gland-based tissue architecture. We report an approximate AJI of 0.592 and an F1-score 0.93 on both datasets.
Availability and implementation
The code-base, modified dataset and results are publicly available.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btz430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6853689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz430</oup_id><sourcerecordid>2232118062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-4b4ca4f8420cccd30e9ba9defcf18e6f1091088e098d9928e9daef1e69b8f54f3</originalsourceid><addsrcrecordid>eNqNUclO3jAQtipQWdpHoPKRS8BbUvtSqYKySEhc4Gw5zrgYOXZqOxX06Wv6Ayo3TjOa-ZYZfQgdUHJEieLHo08-upRnU70tx2P9Izj5gHapGEjHSK-2Ws-Hr52QhO-gvVLuCempEOIj2uGU8p4wtov8KcCC3Vp8ijg5bFOs8FBXE7CJE07jPdjajabAhDMsGQrE2ixTLLi54wmCj_Bv8ESf11D9EgDH1QYwGS93EFN9XKB8QtvOhAKfn-s-uj37cXNy0V1dn1-efL_qrOhZ7cQorBFOCkastRMnoEajJnDWUQmDa89TIiUQJSelmAQ1GXAUBjVK1wvH99G3je6yjjNMtt2bTdBL9rPJjzoZr99uor_TP9NvPcieD1I1gcNngZx-rVCqnn2xEIKJkNaiGeOMUkkG1qD9BmpzKiWDe7WhRD_FpN_GpDcxNd6X_298Zb3k0gBkA0jr8k7Nv63LqkM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232118062</pqid></control><display><type>article</type><title>Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Khoshdeli, Mina ; Winkelmaier, Garrett ; Parvin, Bahram</creator><contributor>Murphy, Robert</contributor><creatorcontrib>Khoshdeli, Mina ; Winkelmaier, Garrett ; Parvin, Bahram ; Murphy, Robert</creatorcontrib><description>Abstract
Motivation
Nuclear delineation and phenotypic profiling are important steps in the automated analysis of histology sections. However, these are challenging problems due to (i) technical variations (e.g. fixation, staining) that originate as a result of sample preparation; (ii) biological heterogeneity (e.g. vesicular versus high chromatin phenotypes, nuclear atypia) and (iii) overlapping nuclei. This Application-Note couples contextual information about the cellular organization with the individual signature of nuclei to improve performance. As a result, routine delineation of nuclei in H&E stained histology sections is enabled for either computer-aided pathology or integration with genome-wide molecular data.
Results
The method has been evaluated on two independent datasets. One dataset originates from our lab and includes H&E stained sections of brain and breast samples. The second dataset is publicly available through IEEE with a focus on gland-based tissue architecture. We report an approximate AJI of 0.592 and an F1-score 0.93 on both datasets.
Availability and implementation
The code-base, modified dataset and results are publicly available.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz430</identifier><identifier>PMID: 31135022</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Notes</subject><ispartof>Bioinformatics, 2019-11, Vol.35 (22), p.4860-4861</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019</rights><rights>The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-4b4ca4f8420cccd30e9ba9defcf18e6f1091088e098d9928e9daef1e69b8f54f3</citedby><cites>FETCH-LOGICAL-c452t-4b4ca4f8420cccd30e9ba9defcf18e6f1091088e098d9928e9daef1e69b8f54f3</cites><orcidid>0000-0002-2732-1643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853689/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853689/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btz430$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31135022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Murphy, Robert</contributor><creatorcontrib>Khoshdeli, Mina</creatorcontrib><creatorcontrib>Winkelmaier, Garrett</creatorcontrib><creatorcontrib>Parvin, Bahram</creatorcontrib><title>Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Nuclear delineation and phenotypic profiling are important steps in the automated analysis of histology sections. However, these are challenging problems due to (i) technical variations (e.g. fixation, staining) that originate as a result of sample preparation; (ii) biological heterogeneity (e.g. vesicular versus high chromatin phenotypes, nuclear atypia) and (iii) overlapping nuclei. This Application-Note couples contextual information about the cellular organization with the individual signature of nuclei to improve performance. As a result, routine delineation of nuclei in H&E stained histology sections is enabled for either computer-aided pathology or integration with genome-wide molecular data.
Results
The method has been evaluated on two independent datasets. One dataset originates from our lab and includes H&E stained sections of brain and breast samples. The second dataset is publicly available through IEEE with a focus on gland-based tissue architecture. We report an approximate AJI of 0.592 and an F1-score 0.93 on both datasets.
Availability and implementation
The code-base, modified dataset and results are publicly available.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Applications Notes</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUclO3jAQtipQWdpHoPKRS8BbUvtSqYKySEhc4Gw5zrgYOXZqOxX06Wv6Ayo3TjOa-ZYZfQgdUHJEieLHo08-upRnU70tx2P9Izj5gHapGEjHSK-2Ws-Hr52QhO-gvVLuCempEOIj2uGU8p4wtov8KcCC3Vp8ijg5bFOs8FBXE7CJE07jPdjajabAhDMsGQrE2ixTLLi54wmCj_Bv8ESf11D9EgDH1QYwGS93EFN9XKB8QtvOhAKfn-s-uj37cXNy0V1dn1-efL_qrOhZ7cQorBFOCkastRMnoEajJnDWUQmDa89TIiUQJSelmAQ1GXAUBjVK1wvH99G3je6yjjNMtt2bTdBL9rPJjzoZr99uor_TP9NvPcieD1I1gcNngZx-rVCqnn2xEIKJkNaiGeOMUkkG1qD9BmpzKiWDe7WhRD_FpN_GpDcxNd6X_298Zb3k0gBkA0jr8k7Nv63LqkM</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Khoshdeli, Mina</creator><creator>Winkelmaier, Garrett</creator><creator>Parvin, Bahram</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2732-1643</orcidid></search><sort><creationdate>20191101</creationdate><title>Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes</title><author>Khoshdeli, Mina ; Winkelmaier, Garrett ; Parvin, Bahram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-4b4ca4f8420cccd30e9ba9defcf18e6f1091088e098d9928e9daef1e69b8f54f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications Notes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khoshdeli, Mina</creatorcontrib><creatorcontrib>Winkelmaier, Garrett</creatorcontrib><creatorcontrib>Parvin, Bahram</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khoshdeli, Mina</au><au>Winkelmaier, Garrett</au><au>Parvin, Bahram</au><au>Murphy, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>35</volume><issue>22</issue><spage>4860</spage><epage>4861</epage><pages>4860-4861</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Nuclear delineation and phenotypic profiling are important steps in the automated analysis of histology sections. However, these are challenging problems due to (i) technical variations (e.g. fixation, staining) that originate as a result of sample preparation; (ii) biological heterogeneity (e.g. vesicular versus high chromatin phenotypes, nuclear atypia) and (iii) overlapping nuclei. This Application-Note couples contextual information about the cellular organization with the individual signature of nuclei to improve performance. As a result, routine delineation of nuclei in H&E stained histology sections is enabled for either computer-aided pathology or integration with genome-wide molecular data.
Results
The method has been evaluated on two independent datasets. One dataset originates from our lab and includes H&E stained sections of brain and breast samples. The second dataset is publicly available through IEEE with a focus on gland-based tissue architecture. We report an approximate AJI of 0.592 and an F1-score 0.93 on both datasets.
Availability and implementation
The code-base, modified dataset and results are publicly available.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31135022</pmid><doi>10.1093/bioinformatics/btz430</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-2732-1643</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2019-11, Vol.35 (22), p.4860-4861 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6853689 |
source | Access via Oxford University Press (Open Access Collection) |
subjects | Applications Notes |
title | Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20fusion%20of%20contextual%20and%20object-based%20representations%20for%20delineation%20of%20multiple%20nuclear%20phenotypes&rft.jtitle=Bioinformatics&rft.au=Khoshdeli,%20Mina&rft.date=2019-11-01&rft.volume=35&rft.issue=22&rft.spage=4860&rft.epage=4861&rft.pages=4860-4861&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz430&rft_dat=%3Cproquest_TOX%3E2232118062%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232118062&rft_id=info:pmid/31135022&rft_oup_id=10.1093/bioinformatics/btz430&rfr_iscdi=true |