Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes

Abstract Motivation Nuclear delineation and phenotypic profiling are important steps in the automated analysis of histology sections. However, these are challenging problems due to (i) technical variations (e.g. fixation, staining) that originate as a result of sample preparation; (ii) biological he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2019-11, Vol.35 (22), p.4860-4861
Hauptverfasser: Khoshdeli, Mina, Winkelmaier, Garrett, Parvin, Bahram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4861
container_issue 22
container_start_page 4860
container_title Bioinformatics
container_volume 35
creator Khoshdeli, Mina
Winkelmaier, Garrett
Parvin, Bahram
description Abstract Motivation Nuclear delineation and phenotypic profiling are important steps in the automated analysis of histology sections. However, these are challenging problems due to (i) technical variations (e.g. fixation, staining) that originate as a result of sample preparation; (ii) biological heterogeneity (e.g. vesicular versus high chromatin phenotypes, nuclear atypia) and (iii) overlapping nuclei. This Application-Note couples contextual information about the cellular organization with the individual signature of nuclei to improve performance. As a result, routine delineation of nuclei in H&E stained histology sections is enabled for either computer-aided pathology or integration with genome-wide molecular data. Results The method has been evaluated on two independent datasets. One dataset originates from our lab and includes H&E stained sections of brain and breast samples. The second dataset is publicly available through IEEE with a focus on gland-based tissue architecture. We report an approximate AJI of 0.592 and an F1-score 0.93 on both datasets. Availability and implementation The code-base, modified dataset and results are publicly available. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btz430
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6853689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz430</oup_id><sourcerecordid>2232118062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-4b4ca4f8420cccd30e9ba9defcf18e6f1091088e098d9928e9daef1e69b8f54f3</originalsourceid><addsrcrecordid>eNqNUclO3jAQtipQWdpHoPKRS8BbUvtSqYKySEhc4Gw5zrgYOXZqOxX06Wv6Ayo3TjOa-ZYZfQgdUHJEieLHo08-upRnU70tx2P9Izj5gHapGEjHSK-2Ws-Hr52QhO-gvVLuCempEOIj2uGU8p4wtov8KcCC3Vp8ijg5bFOs8FBXE7CJE07jPdjajabAhDMsGQrE2ixTLLi54wmCj_Bv8ESf11D9EgDH1QYwGS93EFN9XKB8QtvOhAKfn-s-uj37cXNy0V1dn1-efL_qrOhZ7cQorBFOCkastRMnoEajJnDWUQmDa89TIiUQJSelmAQ1GXAUBjVK1wvH99G3je6yjjNMtt2bTdBL9rPJjzoZr99uor_TP9NvPcieD1I1gcNngZx-rVCqnn2xEIKJkNaiGeOMUkkG1qD9BmpzKiWDe7WhRD_FpN_GpDcxNd6X_298Zb3k0gBkA0jr8k7Nv63LqkM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232118062</pqid></control><display><type>article</type><title>Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Khoshdeli, Mina ; Winkelmaier, Garrett ; Parvin, Bahram</creator><contributor>Murphy, Robert</contributor><creatorcontrib>Khoshdeli, Mina ; Winkelmaier, Garrett ; Parvin, Bahram ; Murphy, Robert</creatorcontrib><description>Abstract Motivation Nuclear delineation and phenotypic profiling are important steps in the automated analysis of histology sections. However, these are challenging problems due to (i) technical variations (e.g. fixation, staining) that originate as a result of sample preparation; (ii) biological heterogeneity (e.g. vesicular versus high chromatin phenotypes, nuclear atypia) and (iii) overlapping nuclei. This Application-Note couples contextual information about the cellular organization with the individual signature of nuclei to improve performance. As a result, routine delineation of nuclei in H&amp;E stained histology sections is enabled for either computer-aided pathology or integration with genome-wide molecular data. Results The method has been evaluated on two independent datasets. One dataset originates from our lab and includes H&amp;E stained sections of brain and breast samples. The second dataset is publicly available through IEEE with a focus on gland-based tissue architecture. We report an approximate AJI of 0.592 and an F1-score 0.93 on both datasets. Availability and implementation The code-base, modified dataset and results are publicly available. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz430</identifier><identifier>PMID: 31135022</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Notes</subject><ispartof>Bioinformatics, 2019-11, Vol.35 (22), p.4860-4861</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019</rights><rights>The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-4b4ca4f8420cccd30e9ba9defcf18e6f1091088e098d9928e9daef1e69b8f54f3</citedby><cites>FETCH-LOGICAL-c452t-4b4ca4f8420cccd30e9ba9defcf18e6f1091088e098d9928e9daef1e69b8f54f3</cites><orcidid>0000-0002-2732-1643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853689/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853689/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btz430$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31135022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Murphy, Robert</contributor><creatorcontrib>Khoshdeli, Mina</creatorcontrib><creatorcontrib>Winkelmaier, Garrett</creatorcontrib><creatorcontrib>Parvin, Bahram</creatorcontrib><title>Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Nuclear delineation and phenotypic profiling are important steps in the automated analysis of histology sections. However, these are challenging problems due to (i) technical variations (e.g. fixation, staining) that originate as a result of sample preparation; (ii) biological heterogeneity (e.g. vesicular versus high chromatin phenotypes, nuclear atypia) and (iii) overlapping nuclei. This Application-Note couples contextual information about the cellular organization with the individual signature of nuclei to improve performance. As a result, routine delineation of nuclei in H&amp;E stained histology sections is enabled for either computer-aided pathology or integration with genome-wide molecular data. Results The method has been evaluated on two independent datasets. One dataset originates from our lab and includes H&amp;E stained sections of brain and breast samples. The second dataset is publicly available through IEEE with a focus on gland-based tissue architecture. We report an approximate AJI of 0.592 and an F1-score 0.93 on both datasets. Availability and implementation The code-base, modified dataset and results are publicly available. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Applications Notes</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUclO3jAQtipQWdpHoPKRS8BbUvtSqYKySEhc4Gw5zrgYOXZqOxX06Wv6Ayo3TjOa-ZYZfQgdUHJEieLHo08-upRnU70tx2P9Izj5gHapGEjHSK-2Ws-Hr52QhO-gvVLuCempEOIj2uGU8p4wtov8KcCC3Vp8ijg5bFOs8FBXE7CJE07jPdjajabAhDMsGQrE2ixTLLi54wmCj_Bv8ESf11D9EgDH1QYwGS93EFN9XKB8QtvOhAKfn-s-uj37cXNy0V1dn1-efL_qrOhZ7cQorBFOCkastRMnoEajJnDWUQmDa89TIiUQJSelmAQ1GXAUBjVK1wvH99G3je6yjjNMtt2bTdBL9rPJjzoZr99uor_TP9NvPcieD1I1gcNngZx-rVCqnn2xEIKJkNaiGeOMUkkG1qD9BmpzKiWDe7WhRD_FpN_GpDcxNd6X_298Zb3k0gBkA0jr8k7Nv63LqkM</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Khoshdeli, Mina</creator><creator>Winkelmaier, Garrett</creator><creator>Parvin, Bahram</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2732-1643</orcidid></search><sort><creationdate>20191101</creationdate><title>Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes</title><author>Khoshdeli, Mina ; Winkelmaier, Garrett ; Parvin, Bahram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-4b4ca4f8420cccd30e9ba9defcf18e6f1091088e098d9928e9daef1e69b8f54f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications Notes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khoshdeli, Mina</creatorcontrib><creatorcontrib>Winkelmaier, Garrett</creatorcontrib><creatorcontrib>Parvin, Bahram</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khoshdeli, Mina</au><au>Winkelmaier, Garrett</au><au>Parvin, Bahram</au><au>Murphy, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>35</volume><issue>22</issue><spage>4860</spage><epage>4861</epage><pages>4860-4861</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Nuclear delineation and phenotypic profiling are important steps in the automated analysis of histology sections. However, these are challenging problems due to (i) technical variations (e.g. fixation, staining) that originate as a result of sample preparation; (ii) biological heterogeneity (e.g. vesicular versus high chromatin phenotypes, nuclear atypia) and (iii) overlapping nuclei. This Application-Note couples contextual information about the cellular organization with the individual signature of nuclei to improve performance. As a result, routine delineation of nuclei in H&amp;E stained histology sections is enabled for either computer-aided pathology or integration with genome-wide molecular data. Results The method has been evaluated on two independent datasets. One dataset originates from our lab and includes H&amp;E stained sections of brain and breast samples. The second dataset is publicly available through IEEE with a focus on gland-based tissue architecture. We report an approximate AJI of 0.592 and an F1-score 0.93 on both datasets. Availability and implementation The code-base, modified dataset and results are publicly available. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31135022</pmid><doi>10.1093/bioinformatics/btz430</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-2732-1643</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2019-11, Vol.35 (22), p.4860-4861
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6853689
source Access via Oxford University Press (Open Access Collection)
subjects Applications Notes
title Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20fusion%20of%20contextual%20and%20object-based%20representations%20for%20delineation%20of%20multiple%20nuclear%20phenotypes&rft.jtitle=Bioinformatics&rft.au=Khoshdeli,%20Mina&rft.date=2019-11-01&rft.volume=35&rft.issue=22&rft.spage=4860&rft.epage=4861&rft.pages=4860-4861&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz430&rft_dat=%3Cproquest_TOX%3E2232118062%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232118062&rft_id=info:pmid/31135022&rft_oup_id=10.1093/bioinformatics/btz430&rfr_iscdi=true