ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks
Abstract Motivation Contact-map of a protein sequence dictates the global topology of structural fold. Accurate prediction of the contact-map is thus essential to protein 3D structure prediction, which is particularly useful for the protein sequences that do not have close homology templates in the...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2019-11, Vol.35 (22), p.4647-4655 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4655 |
---|---|
container_issue | 22 |
container_start_page | 4647 |
container_title | Bioinformatics |
container_volume | 35 |
creator | Li, Yang Hu, Jun Zhang, Chengxin Yu, Dong-Jun Zhang, Yang |
description | Abstract
Motivation
Contact-map of a protein sequence dictates the global topology of structural fold. Accurate prediction of the contact-map is thus essential to protein 3D structure prediction, which is particularly useful for the protein sequences that do not have close homology templates in the Protein Data Bank.
Results
We developed a new method, ResPRE, to predict residue-level protein contacts using inverse covariance matrix (or precision matrix) of multiple sequence alignments (MSAs) through deep residual convolutional neural network training. The approach was tested on a set of 158 non-homologous proteins collected from the CASP experiments and achieved an average accuracy of 50.6% in the top-L long-range contact prediction with L being the sequence length, which is 11.7% higher than the best of other state-of-the-art approaches ranging from coevolution coupling analysis to deep neural network training. Detailed data analyses show that the major advantage of ResPRE lies at the utilization of precision matrix that helps rule out transitional noises of contact-maps compared with the previously used covariance matrix. Meanwhile, the residual network with parallel shortcut layer connections increases the learning ability of deep neural network training. It was also found that appropriate collection of MSAs can further improve the accuracy of final contact-map predictions. The standalone package and online server of ResPRE are made freely available, which should bring important impact on protein structure and function modeling studies in particular for the distant- and non-homology protein targets.
Availability and implementation
https://zhanglab.ccmb.med.umich.edu/ResPRE and https://github.com/leeyang/ResPRE.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btz291 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6853658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz291</oup_id><sourcerecordid>2231916459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-8d6c9af0fec12df4815393abc843420096e72811304ea491269ae1ae3d01f8c93</originalsourceid><addsrcrecordid>eNqNUU1v1DAQtRAVLYWfUJQjl1CP7XjjHpBQVT6kSqAKzpbjTHZdsnZqO5Tl19fRtlV74zQzz2_ePPkRcgL0A1DFTzsXnB9C3JrsbDrt8j-m4AU5AiFpzWijXpaey1UtWsoPyeuUriltQAjxihxyoCu6AnlEpitMP64uzqqNW29qY-0cjd1VUwwZna9s8NnYXGbsnc0u-KrbFXSeRufXC2xdWtBiI7q_1a3Lm6pHnKqIyfWzGSuPRXIp-TbE3-kNORjMmPDtfT0mvz5f_Dz_Wl9-__Lt_NNlbUXDct320ioz0AEtsH4QLTRccdPZVnDBKFUSV6wF4FSgEQqYVAbBIO8pDK1V_Jh83OtOc7fF3qLPxYaeotuauNPBOP38xbuNXoc_WrYNl01bBN7fC8RwM2PKeuuSxXE0HsOcNGMcFEjRLLeaPdXGkFLE4fEMUL2kpZ-npfdplb13Tz0-bj3EUwh0Tygf_p-ad9qSqzs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231916459</pqid></control><display><type>article</type><title>ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks</title><source>Oxford Journals Open Access Collection</source><creator>Li, Yang ; Hu, Jun ; Zhang, Chengxin ; Yu, Dong-Jun ; Zhang, Yang</creator><creatorcontrib>Li, Yang ; Hu, Jun ; Zhang, Chengxin ; Yu, Dong-Jun ; Zhang, Yang</creatorcontrib><description>Abstract
Motivation
Contact-map of a protein sequence dictates the global topology of structural fold. Accurate prediction of the contact-map is thus essential to protein 3D structure prediction, which is particularly useful for the protein sequences that do not have close homology templates in the Protein Data Bank.
Results
We developed a new method, ResPRE, to predict residue-level protein contacts using inverse covariance matrix (or precision matrix) of multiple sequence alignments (MSAs) through deep residual convolutional neural network training. The approach was tested on a set of 158 non-homologous proteins collected from the CASP experiments and achieved an average accuracy of 50.6% in the top-L long-range contact prediction with L being the sequence length, which is 11.7% higher than the best of other state-of-the-art approaches ranging from coevolution coupling analysis to deep neural network training. Detailed data analyses show that the major advantage of ResPRE lies at the utilization of precision matrix that helps rule out transitional noises of contact-maps compared with the previously used covariance matrix. Meanwhile, the residual network with parallel shortcut layer connections increases the learning ability of deep neural network training. It was also found that appropriate collection of MSAs can further improve the accuracy of final contact-map predictions. The standalone package and online server of ResPRE are made freely available, which should bring important impact on protein structure and function modeling studies in particular for the distant- and non-homology protein targets.
Availability and implementation
https://zhanglab.ccmb.med.umich.edu/ResPRE and https://github.com/leeyang/ResPRE.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz291</identifier><identifier>PMID: 31070716</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Original Papers</subject><ispartof>Bioinformatics, 2019-11, Vol.35 (22), p.4647-4655</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019</rights><rights>The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-8d6c9af0fec12df4815393abc843420096e72811304ea491269ae1ae3d01f8c93</citedby><cites>FETCH-LOGICAL-c452t-8d6c9af0fec12df4815393abc843420096e72811304ea491269ae1ae3d01f8c93</cites><orcidid>0000-0001-7290-1324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853658/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853658/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btz291$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31070716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Zhang, Chengxin</creatorcontrib><creatorcontrib>Yu, Dong-Jun</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><title>ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Contact-map of a protein sequence dictates the global topology of structural fold. Accurate prediction of the contact-map is thus essential to protein 3D structure prediction, which is particularly useful for the protein sequences that do not have close homology templates in the Protein Data Bank.
Results
We developed a new method, ResPRE, to predict residue-level protein contacts using inverse covariance matrix (or precision matrix) of multiple sequence alignments (MSAs) through deep residual convolutional neural network training. The approach was tested on a set of 158 non-homologous proteins collected from the CASP experiments and achieved an average accuracy of 50.6% in the top-L long-range contact prediction with L being the sequence length, which is 11.7% higher than the best of other state-of-the-art approaches ranging from coevolution coupling analysis to deep neural network training. Detailed data analyses show that the major advantage of ResPRE lies at the utilization of precision matrix that helps rule out transitional noises of contact-maps compared with the previously used covariance matrix. Meanwhile, the residual network with parallel shortcut layer connections increases the learning ability of deep neural network training. It was also found that appropriate collection of MSAs can further improve the accuracy of final contact-map predictions. The standalone package and online server of ResPRE are made freely available, which should bring important impact on protein structure and function modeling studies in particular for the distant- and non-homology protein targets.
Availability and implementation
https://zhanglab.ccmb.med.umich.edu/ResPRE and https://github.com/leeyang/ResPRE.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Original Papers</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUU1v1DAQtRAVLYWfUJQjl1CP7XjjHpBQVT6kSqAKzpbjTHZdsnZqO5Tl19fRtlV74zQzz2_ePPkRcgL0A1DFTzsXnB9C3JrsbDrt8j-m4AU5AiFpzWijXpaey1UtWsoPyeuUriltQAjxihxyoCu6AnlEpitMP64uzqqNW29qY-0cjd1VUwwZna9s8NnYXGbsnc0u-KrbFXSeRufXC2xdWtBiI7q_1a3Lm6pHnKqIyfWzGSuPRXIp-TbE3-kNORjMmPDtfT0mvz5f_Dz_Wl9-__Lt_NNlbUXDct320ioz0AEtsH4QLTRccdPZVnDBKFUSV6wF4FSgEQqYVAbBIO8pDK1V_Jh83OtOc7fF3qLPxYaeotuauNPBOP38xbuNXoc_WrYNl01bBN7fC8RwM2PKeuuSxXE0HsOcNGMcFEjRLLeaPdXGkFLE4fEMUL2kpZ-npfdplb13Tz0-bj3EUwh0Tygf_p-ad9qSqzs</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Li, Yang</creator><creator>Hu, Jun</creator><creator>Zhang, Chengxin</creator><creator>Yu, Dong-Jun</creator><creator>Zhang, Yang</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7290-1324</orcidid></search><sort><creationdate>20191101</creationdate><title>ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks</title><author>Li, Yang ; Hu, Jun ; Zhang, Chengxin ; Yu, Dong-Jun ; Zhang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-8d6c9af0fec12df4815393abc843420096e72811304ea491269ae1ae3d01f8c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Original Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Zhang, Chengxin</creatorcontrib><creatorcontrib>Yu, Dong-Jun</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yang</au><au>Hu, Jun</au><au>Zhang, Chengxin</au><au>Yu, Dong-Jun</au><au>Zhang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>35</volume><issue>22</issue><spage>4647</spage><epage>4655</epage><pages>4647-4655</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Contact-map of a protein sequence dictates the global topology of structural fold. Accurate prediction of the contact-map is thus essential to protein 3D structure prediction, which is particularly useful for the protein sequences that do not have close homology templates in the Protein Data Bank.
Results
We developed a new method, ResPRE, to predict residue-level protein contacts using inverse covariance matrix (or precision matrix) of multiple sequence alignments (MSAs) through deep residual convolutional neural network training. The approach was tested on a set of 158 non-homologous proteins collected from the CASP experiments and achieved an average accuracy of 50.6% in the top-L long-range contact prediction with L being the sequence length, which is 11.7% higher than the best of other state-of-the-art approaches ranging from coevolution coupling analysis to deep neural network training. Detailed data analyses show that the major advantage of ResPRE lies at the utilization of precision matrix that helps rule out transitional noises of contact-maps compared with the previously used covariance matrix. Meanwhile, the residual network with parallel shortcut layer connections increases the learning ability of deep neural network training. It was also found that appropriate collection of MSAs can further improve the accuracy of final contact-map predictions. The standalone package and online server of ResPRE are made freely available, which should bring important impact on protein structure and function modeling studies in particular for the distant- and non-homology protein targets.
Availability and implementation
https://zhanglab.ccmb.med.umich.edu/ResPRE and https://github.com/leeyang/ResPRE.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31070716</pmid><doi>10.1093/bioinformatics/btz291</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7290-1324</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2019-11, Vol.35 (22), p.4647-4655 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6853658 |
source | Oxford Journals Open Access Collection |
subjects | Original Papers |
title | ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ResPRE:%20high-accuracy%20protein%20contact%20prediction%20by%20coupling%20precision%20matrix%20with%20deep%20residual%20neural%20networks&rft.jtitle=Bioinformatics&rft.au=Li,%20Yang&rft.date=2019-11-01&rft.volume=35&rft.issue=22&rft.spage=4647&rft.epage=4655&rft.pages=4647-4655&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz291&rft_dat=%3Cproquest_TOX%3E2231916459%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231916459&rft_id=info:pmid/31070716&rft_oup_id=10.1093/bioinformatics/btz291&rfr_iscdi=true |