The Role of Mixed Amine/Amide Ligation in Nickel Superoxide Dismutase

Superoxide dismutases (SODs) utilize a ping-pong mechanism in which a redox-active metal cycles between oxidized and reduced forms that differ by one electron to catalyze the disproportionation of superoxide to dioxygen and hydrogen peroxide. Nickel-dependent SOD (NiSOD) is a unique biological solut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2018-10, Vol.57 (20), p.12521-12535
Hauptverfasser: Huang, Hsin-Ting, Dillon, Stephanie, Ryan, Kelly C, Campecino, Julius O, Watkins, Olivia E, Cabelli, Diane E, Brunold, Thomas C, Maroney, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12535
container_issue 20
container_start_page 12521
container_title Inorganic chemistry
container_volume 57
creator Huang, Hsin-Ting
Dillon, Stephanie
Ryan, Kelly C
Campecino, Julius O
Watkins, Olivia E
Cabelli, Diane E
Brunold, Thomas C
Maroney, Michael J
description Superoxide dismutases (SODs) utilize a ping-pong mechanism in which a redox-active metal cycles between oxidized and reduced forms that differ by one electron to catalyze the disproportionation of superoxide to dioxygen and hydrogen peroxide. Nickel-dependent SOD (NiSOD) is a unique biological solution for controlling superoxide levels. This enzyme relies on the use of cysteinate ligands to bring the Ni­(III/II) redox couple into the range required for catalysis (∼300 mV vs. NHE). The use of cysteine thiolates, which are not found in any other SOD, is a curious choice because of their well-known oxidation by peroxide and dioxygen. The NiSOD active site cysteinate ligands are resistant to oxidation, and prior studies of synthetic and computational models point to the backbone N-donors in the active site (the N-terminal amine and the amide N atom of Cys2) as being involved in stabilizing the cysteines to oxidation. To test the role of the backbone N-donors, we have constructed a variant of NiSOD wherein an alanine residue was added to the N-terminus (Ala0-NiSOD), effectively altering the amine ligand to an amide. X-ray absorption, electronic absorption, and magnetic circular dichroism (MCD) spectroscopic analyses of as-isolated Ala0-NiSOD coupled with density functional theory (DFT) geometry optimized models that were evaluated on the basis of the spectroscopic data within the framework of DFT and time-dependent DFT computations are consistent with a diamagnetic Ni­(II) site with two cysteinate, one His1 amide, and one Cys2 amidate ligands. The variant protein is catalytically inactive, has an altered electronic absorption spectrum associated with the nickel site, and is sensitive to oxidation. Mass spectrometric analysis of the protein exposed to air shows the presence of a mixture of oxidation products, the principal ones being a disulfide, a bis-sulfenate, and a bis-sulfinate derived from the active site cysteine ligands. Details of the electronic structure of the Ni­(III) site available from the DFT calculations point to subtle changes in the unpaired spin density on the S-donors as being responsible for the altered sensitivity of Ala0-NiSOD to O2.
doi_str_mv 10.1021/acs.inorgchem.8b01499
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6853177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116124201</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-3c9a3ae65eb175dba80a82c470c8486a3906e2b52fe58a2a3d61aaf6523f5c0c3</originalsourceid><addsrcrecordid>eNqFkU-P0zAQxS0EYsvCRwBFnLi0O2PHjnNBWi3LH6mABIvEzXKcSeslsbt2gpZvT6qWCk5cPJbm997Y8xh7jrBC4HhhXV75ENPGbWlY6QawrOsHbIGSw1IifH_IFgDzHZWqz9iTnG8BoBaleszOBHCNvK4X7PpmS8WX2FMRu-Kjv6e2uBx8oIv5bKlY-40dfQyFD8Un735QX3yddpTi_b77xudhGm2mp-xRZ_tMz471nH17e31z9X65_vzuw9XlemlLDeNSuNoKS0pSg5VsG6vBau7KCpwutbKiBkW8kbwjqS23olVobackF5104MQ5e33w3U3NQK2jMCbbm13yg02_TLTe_NsJfms28adRWgqsqtng5cEg5tGb7PxIbutiCORGg2WluN5Dr45TUrybKI9m8NlR39tAccqGIyrkJQecUXlAXYo5J-pOb0Ew-5zMnJM55WSOOc26F39_5KT6E8wM4AHY62_jlMK81_-Y_gZEuqNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116124201</pqid></control><display><type>article</type><title>The Role of Mixed Amine/Amide Ligation in Nickel Superoxide Dismutase</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Huang, Hsin-Ting ; Dillon, Stephanie ; Ryan, Kelly C ; Campecino, Julius O ; Watkins, Olivia E ; Cabelli, Diane E ; Brunold, Thomas C ; Maroney, Michael J</creator><creatorcontrib>Huang, Hsin-Ting ; Dillon, Stephanie ; Ryan, Kelly C ; Campecino, Julius O ; Watkins, Olivia E ; Cabelli, Diane E ; Brunold, Thomas C ; Maroney, Michael J ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Univ. of Wisconsin - Madison, Madison, WI (United States)</creatorcontrib><description>Superoxide dismutases (SODs) utilize a ping-pong mechanism in which a redox-active metal cycles between oxidized and reduced forms that differ by one electron to catalyze the disproportionation of superoxide to dioxygen and hydrogen peroxide. Nickel-dependent SOD (NiSOD) is a unique biological solution for controlling superoxide levels. This enzyme relies on the use of cysteinate ligands to bring the Ni­(III/II) redox couple into the range required for catalysis (∼300 mV vs. NHE). The use of cysteine thiolates, which are not found in any other SOD, is a curious choice because of their well-known oxidation by peroxide and dioxygen. The NiSOD active site cysteinate ligands are resistant to oxidation, and prior studies of synthetic and computational models point to the backbone N-donors in the active site (the N-terminal amine and the amide N atom of Cys2) as being involved in stabilizing the cysteines to oxidation. To test the role of the backbone N-donors, we have constructed a variant of NiSOD wherein an alanine residue was added to the N-terminus (Ala0-NiSOD), effectively altering the amine ligand to an amide. X-ray absorption, electronic absorption, and magnetic circular dichroism (MCD) spectroscopic analyses of as-isolated Ala0-NiSOD coupled with density functional theory (DFT) geometry optimized models that were evaluated on the basis of the spectroscopic data within the framework of DFT and time-dependent DFT computations are consistent with a diamagnetic Ni­(II) site with two cysteinate, one His1 amide, and one Cys2 amidate ligands. The variant protein is catalytically inactive, has an altered electronic absorption spectrum associated with the nickel site, and is sensitive to oxidation. Mass spectrometric analysis of the protein exposed to air shows the presence of a mixture of oxidation products, the principal ones being a disulfide, a bis-sulfenate, and a bis-sulfinate derived from the active site cysteine ligands. Details of the electronic structure of the Ni­(III) site available from the DFT calculations point to subtle changes in the unpaired spin density on the S-donors as being responsible for the altered sensitivity of Ala0-NiSOD to O2.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.8b01499</identifier><identifier>PMID: 30281299</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amides - chemistry ; Amides - metabolism ; Amines - chemistry ; Amines - metabolism ; density functional theory (DFT) ; differential scanning calorimetry (DSC) ; Escherichia coli - metabolism ; Gene Expression Regulation, Enzymologic ; Models, Molecular ; Nickel - chemistry ; Protein Conformation ; RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY ; superoxide dismutase (SOD) ; Superoxide Dismutase - chemistry ; Superoxide Dismutase - metabolism ; X-ray absorption spectroscopy (XAS)</subject><ispartof>Inorganic chemistry, 2018-10, Vol.57 (20), p.12521-12535</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a480t-3c9a3ae65eb175dba80a82c470c8486a3906e2b52fe58a2a3d61aaf6523f5c0c3</citedby><cites>FETCH-LOGICAL-a480t-3c9a3ae65eb175dba80a82c470c8486a3906e2b52fe58a2a3d61aaf6523f5c0c3</cites><orcidid>0000-0001-6516-598X ; 0000-0002-5598-3038 ; 0000000255983038 ; 000000016516598X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.8b01499$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.8b01499$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30281299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1476287$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Hsin-Ting</creatorcontrib><creatorcontrib>Dillon, Stephanie</creatorcontrib><creatorcontrib>Ryan, Kelly C</creatorcontrib><creatorcontrib>Campecino, Julius O</creatorcontrib><creatorcontrib>Watkins, Olivia E</creatorcontrib><creatorcontrib>Cabelli, Diane E</creatorcontrib><creatorcontrib>Brunold, Thomas C</creatorcontrib><creatorcontrib>Maroney, Michael J</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin - Madison, Madison, WI (United States)</creatorcontrib><title>The Role of Mixed Amine/Amide Ligation in Nickel Superoxide Dismutase</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Superoxide dismutases (SODs) utilize a ping-pong mechanism in which a redox-active metal cycles between oxidized and reduced forms that differ by one electron to catalyze the disproportionation of superoxide to dioxygen and hydrogen peroxide. Nickel-dependent SOD (NiSOD) is a unique biological solution for controlling superoxide levels. This enzyme relies on the use of cysteinate ligands to bring the Ni­(III/II) redox couple into the range required for catalysis (∼300 mV vs. NHE). The use of cysteine thiolates, which are not found in any other SOD, is a curious choice because of their well-known oxidation by peroxide and dioxygen. The NiSOD active site cysteinate ligands are resistant to oxidation, and prior studies of synthetic and computational models point to the backbone N-donors in the active site (the N-terminal amine and the amide N atom of Cys2) as being involved in stabilizing the cysteines to oxidation. To test the role of the backbone N-donors, we have constructed a variant of NiSOD wherein an alanine residue was added to the N-terminus (Ala0-NiSOD), effectively altering the amine ligand to an amide. X-ray absorption, electronic absorption, and magnetic circular dichroism (MCD) spectroscopic analyses of as-isolated Ala0-NiSOD coupled with density functional theory (DFT) geometry optimized models that were evaluated on the basis of the spectroscopic data within the framework of DFT and time-dependent DFT computations are consistent with a diamagnetic Ni­(II) site with two cysteinate, one His1 amide, and one Cys2 amidate ligands. The variant protein is catalytically inactive, has an altered electronic absorption spectrum associated with the nickel site, and is sensitive to oxidation. Mass spectrometric analysis of the protein exposed to air shows the presence of a mixture of oxidation products, the principal ones being a disulfide, a bis-sulfenate, and a bis-sulfinate derived from the active site cysteine ligands. Details of the electronic structure of the Ni­(III) site available from the DFT calculations point to subtle changes in the unpaired spin density on the S-donors as being responsible for the altered sensitivity of Ala0-NiSOD to O2.</description><subject>Amides - chemistry</subject><subject>Amides - metabolism</subject><subject>Amines - chemistry</subject><subject>Amines - metabolism</subject><subject>density functional theory (DFT)</subject><subject>differential scanning calorimetry (DSC)</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Models, Molecular</subject><subject>Nickel - chemistry</subject><subject>Protein Conformation</subject><subject>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</subject><subject>superoxide dismutase (SOD)</subject><subject>Superoxide Dismutase - chemistry</subject><subject>Superoxide Dismutase - metabolism</subject><subject>X-ray absorption spectroscopy (XAS)</subject><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU-P0zAQxS0EYsvCRwBFnLi0O2PHjnNBWi3LH6mABIvEzXKcSeslsbt2gpZvT6qWCk5cPJbm997Y8xh7jrBC4HhhXV75ENPGbWlY6QawrOsHbIGSw1IifH_IFgDzHZWqz9iTnG8BoBaleszOBHCNvK4X7PpmS8WX2FMRu-Kjv6e2uBx8oIv5bKlY-40dfQyFD8Un735QX3yddpTi_b77xudhGm2mp-xRZ_tMz471nH17e31z9X65_vzuw9XlemlLDeNSuNoKS0pSg5VsG6vBau7KCpwutbKiBkW8kbwjqS23olVobackF5104MQ5e33w3U3NQK2jMCbbm13yg02_TLTe_NsJfms28adRWgqsqtng5cEg5tGb7PxIbutiCORGg2WluN5Dr45TUrybKI9m8NlR39tAccqGIyrkJQecUXlAXYo5J-pOb0Ew-5zMnJM55WSOOc26F39_5KT6E8wM4AHY62_jlMK81_-Y_gZEuqNw</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Huang, Hsin-Ting</creator><creator>Dillon, Stephanie</creator><creator>Ryan, Kelly C</creator><creator>Campecino, Julius O</creator><creator>Watkins, Olivia E</creator><creator>Cabelli, Diane E</creator><creator>Brunold, Thomas C</creator><creator>Maroney, Michael J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6516-598X</orcidid><orcidid>https://orcid.org/0000-0002-5598-3038</orcidid><orcidid>https://orcid.org/0000000255983038</orcidid><orcidid>https://orcid.org/000000016516598X</orcidid></search><sort><creationdate>20181015</creationdate><title>The Role of Mixed Amine/Amide Ligation in Nickel Superoxide Dismutase</title><author>Huang, Hsin-Ting ; Dillon, Stephanie ; Ryan, Kelly C ; Campecino, Julius O ; Watkins, Olivia E ; Cabelli, Diane E ; Brunold, Thomas C ; Maroney, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-3c9a3ae65eb175dba80a82c470c8486a3906e2b52fe58a2a3d61aaf6523f5c0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amides - chemistry</topic><topic>Amides - metabolism</topic><topic>Amines - chemistry</topic><topic>Amines - metabolism</topic><topic>density functional theory (DFT)</topic><topic>differential scanning calorimetry (DSC)</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Models, Molecular</topic><topic>Nickel - chemistry</topic><topic>Protein Conformation</topic><topic>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</topic><topic>superoxide dismutase (SOD)</topic><topic>Superoxide Dismutase - chemistry</topic><topic>Superoxide Dismutase - metabolism</topic><topic>X-ray absorption spectroscopy (XAS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hsin-Ting</creatorcontrib><creatorcontrib>Dillon, Stephanie</creatorcontrib><creatorcontrib>Ryan, Kelly C</creatorcontrib><creatorcontrib>Campecino, Julius O</creatorcontrib><creatorcontrib>Watkins, Olivia E</creatorcontrib><creatorcontrib>Cabelli, Diane E</creatorcontrib><creatorcontrib>Brunold, Thomas C</creatorcontrib><creatorcontrib>Maroney, Michael J</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin - Madison, Madison, WI (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hsin-Ting</au><au>Dillon, Stephanie</au><au>Ryan, Kelly C</au><au>Campecino, Julius O</au><au>Watkins, Olivia E</au><au>Cabelli, Diane E</au><au>Brunold, Thomas C</au><au>Maroney, Michael J</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Univ. of Wisconsin - Madison, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Mixed Amine/Amide Ligation in Nickel Superoxide Dismutase</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2018-10-15</date><risdate>2018</risdate><volume>57</volume><issue>20</issue><spage>12521</spage><epage>12535</epage><pages>12521-12535</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Superoxide dismutases (SODs) utilize a ping-pong mechanism in which a redox-active metal cycles between oxidized and reduced forms that differ by one electron to catalyze the disproportionation of superoxide to dioxygen and hydrogen peroxide. Nickel-dependent SOD (NiSOD) is a unique biological solution for controlling superoxide levels. This enzyme relies on the use of cysteinate ligands to bring the Ni­(III/II) redox couple into the range required for catalysis (∼300 mV vs. NHE). The use of cysteine thiolates, which are not found in any other SOD, is a curious choice because of their well-known oxidation by peroxide and dioxygen. The NiSOD active site cysteinate ligands are resistant to oxidation, and prior studies of synthetic and computational models point to the backbone N-donors in the active site (the N-terminal amine and the amide N atom of Cys2) as being involved in stabilizing the cysteines to oxidation. To test the role of the backbone N-donors, we have constructed a variant of NiSOD wherein an alanine residue was added to the N-terminus (Ala0-NiSOD), effectively altering the amine ligand to an amide. X-ray absorption, electronic absorption, and magnetic circular dichroism (MCD) spectroscopic analyses of as-isolated Ala0-NiSOD coupled with density functional theory (DFT) geometry optimized models that were evaluated on the basis of the spectroscopic data within the framework of DFT and time-dependent DFT computations are consistent with a diamagnetic Ni­(II) site with two cysteinate, one His1 amide, and one Cys2 amidate ligands. The variant protein is catalytically inactive, has an altered electronic absorption spectrum associated with the nickel site, and is sensitive to oxidation. Mass spectrometric analysis of the protein exposed to air shows the presence of a mixture of oxidation products, the principal ones being a disulfide, a bis-sulfenate, and a bis-sulfinate derived from the active site cysteine ligands. Details of the electronic structure of the Ni­(III) site available from the DFT calculations point to subtle changes in the unpaired spin density on the S-donors as being responsible for the altered sensitivity of Ala0-NiSOD to O2.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30281299</pmid><doi>10.1021/acs.inorgchem.8b01499</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6516-598X</orcidid><orcidid>https://orcid.org/0000-0002-5598-3038</orcidid><orcidid>https://orcid.org/0000000255983038</orcidid><orcidid>https://orcid.org/000000016516598X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2018-10, Vol.57 (20), p.12521-12535
issn 0020-1669
1520-510X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6853177
source MEDLINE; American Chemical Society Journals
subjects Amides - chemistry
Amides - metabolism
Amines - chemistry
Amines - metabolism
density functional theory (DFT)
differential scanning calorimetry (DSC)
Escherichia coli - metabolism
Gene Expression Regulation, Enzymologic
Models, Molecular
Nickel - chemistry
Protein Conformation
RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY
superoxide dismutase (SOD)
Superoxide Dismutase - chemistry
Superoxide Dismutase - metabolism
X-ray absorption spectroscopy (XAS)
title The Role of Mixed Amine/Amide Ligation in Nickel Superoxide Dismutase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Mixed%20Amine/Amide%20Ligation%20in%20Nickel%20Superoxide%20Dismutase&rft.jtitle=Inorganic%20chemistry&rft.au=Huang,%20Hsin-Ting&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2018-10-15&rft.volume=57&rft.issue=20&rft.spage=12521&rft.epage=12535&rft.pages=12521-12535&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.8b01499&rft_dat=%3Cproquest_pubme%3E2116124201%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116124201&rft_id=info:pmid/30281299&rfr_iscdi=true