Spatially explicit network analysis reveals multi-species annual cycle movement patterns of sea ducks
Conservation of long-distance migratory species poses unique challenges. Migratory connectivity, that is, the extent to which groupings of individuals at breeding sites are maintained in wintering areas, is frequently used to evaluate population structure and assess use of key habitat areas. However...
Gespeichert in:
Veröffentlicht in: | Ecological applications 2019-07, Vol.29 (5), p.1-17 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Ecological applications |
container_volume | 29 |
creator | Lamb, Juliet S. Paton, Peter W. C. Osenkowski, Jason E. Badzinski, Shannon S. Berlin, Alicia M. Bowman, Tim Dwyer, Chris Fara, Luke J. Gilliland, Scott G. Kenow, Kevin Lepage, Christine Mallory, Mark L. Olsen, Glenn H. Perry, Matthew C. Petrie, Scott A. Savard, Jean-Pierre L. Savoy, Lucas Schummer, Michael Spiegel, Caleb S. McWilliams, Scott R. |
description | Conservation of long-distance migratory species poses unique challenges. Migratory connectivity, that is, the extent to which groupings of individuals at breeding sites are maintained in wintering areas, is frequently used to evaluate population structure and assess use of key habitat areas. However, for species with complex or variable annual cycle movements, this traditional bimodal framework of migratory connectivity may be overly simplistic. Like many other waterfowl, sea ducks often travel to specific pre-and post-breeding sites outside their nesting and wintering areas to prepare for migration by feeding extensively and, in some cases, molting their flight feathers. These additional migrations may play a key role in population structure, but are not included in traditional models of migratory connectivity. Network analysis, which applies graph theory to assess linkages between discrete locations or entities, offers a powerful tool for quantitatively assessing the contributions of different sites used throughout the annual cycle to complex spatial networks. We collected satellite telemetry data on annual cycle movements of 672 individual sea ducks of five species from throughout eastern North America and the Great Lakes. From these data, we constructed a multi-species network model of migratory patterns and site use over the course of breeding, molting, wintering, and migratory staging. Our results highlight inter-and intra-specific differences in the patterns and complexity of annual cycle movement patterns, including the central importance of staging and molting sites in James Bay, the St. Lawrence River, and southern New England to multi-species annual cycle habitat linkages, and highlight the value of Long-tailed Ducks (Calengula haemalis) as an umbrella species to represent the movement patterns of multiple sea duck species. We also discuss potential applications of network migration models to conservation prioritization, identification of population units, and integrating different data streams. |
doi_str_mv | 10.1002/eap.1919 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6851985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26735373</jstor_id><sourcerecordid>26735373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5209-9c8639c223d1f6949ea1e6ae27127a5ed76e2cd778bab21d85cea500da3c27993</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoMotlbBP6AEvfFmaj42k8mNUEq1QqGCeh2ymbM220wyJpmt8-_NsutWheYmgfPwnJPzIvSSklNKCHsPZjyliqpH6JgqrhohOva4vomgDZEtPULPcl6TehhjT9ERp3RBWcePEXwdTXHG-xnDr9E76woOUO5iusUmGD9nl3GCDRif8TD54po8gnWQazlMxmM7Ww94iBsYIBRcdQVSyDiucAaD-8ne5ufoyaoK4MX-PkHfP158O79srq4_fT4_u2qsYEQ1ynYtV5Yx3tNVqxYKDIXWAJOUSSOgly0w20vZLc2S0b4TFowgpDfcMqkUP0Efdt5xWg7Q2zpQMl6PyQ0mzToap_-tBHejf8SNbjtBVSeq4M1OEHNxOtdtgL2xMQSwRVPBOCfbLu_2XVL8OUEuenDZgvcmQJyyZrzuXYpObtG3_6HrOKW610oxsVjUzGR3L7Qp5pxgdZiYEr0NWNeA9Tbgir7--4cH8E-iFWh2wJ3zMD8o0hdnX_bCVzt-nUtMB561kgsuOf8NyiO6QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254491978</pqid></control><display><type>article</type><title>Spatially explicit network analysis reveals multi-species annual cycle movement patterns of sea ducks</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lamb, Juliet S. ; Paton, Peter W. C. ; Osenkowski, Jason E. ; Badzinski, Shannon S. ; Berlin, Alicia M. ; Bowman, Tim ; Dwyer, Chris ; Fara, Luke J. ; Gilliland, Scott G. ; Kenow, Kevin ; Lepage, Christine ; Mallory, Mark L. ; Olsen, Glenn H. ; Perry, Matthew C. ; Petrie, Scott A. ; Savard, Jean-Pierre L. ; Savoy, Lucas ; Schummer, Michael ; Spiegel, Caleb S. ; McWilliams, Scott R.</creator><creatorcontrib>Lamb, Juliet S. ; Paton, Peter W. C. ; Osenkowski, Jason E. ; Badzinski, Shannon S. ; Berlin, Alicia M. ; Bowman, Tim ; Dwyer, Chris ; Fara, Luke J. ; Gilliland, Scott G. ; Kenow, Kevin ; Lepage, Christine ; Mallory, Mark L. ; Olsen, Glenn H. ; Perry, Matthew C. ; Petrie, Scott A. ; Savard, Jean-Pierre L. ; Savoy, Lucas ; Schummer, Michael ; Spiegel, Caleb S. ; McWilliams, Scott R. ; Univ. of Rhode Island, Kingston, RI (United States)</creatorcontrib><description>Conservation of long-distance migratory species poses unique challenges. Migratory connectivity, that is, the extent to which groupings of individuals at breeding sites are maintained in wintering areas, is frequently used to evaluate population structure and assess use of key habitat areas. However, for species with complex or variable annual cycle movements, this traditional bimodal framework of migratory connectivity may be overly simplistic. Like many other waterfowl, sea ducks often travel to specific pre-and post-breeding sites outside their nesting and wintering areas to prepare for migration by feeding extensively and, in some cases, molting their flight feathers. These additional migrations may play a key role in population structure, but are not included in traditional models of migratory connectivity. Network analysis, which applies graph theory to assess linkages between discrete locations or entities, offers a powerful tool for quantitatively assessing the contributions of different sites used throughout the annual cycle to complex spatial networks. We collected satellite telemetry data on annual cycle movements of 672 individual sea ducks of five species from throughout eastern North America and the Great Lakes. From these data, we constructed a multi-species network model of migratory patterns and site use over the course of breeding, molting, wintering, and migratory staging. Our results highlight inter-and intra-specific differences in the patterns and complexity of annual cycle movement patterns, including the central importance of staging and molting sites in James Bay, the St. Lawrence River, and southern New England to multi-species annual cycle habitat linkages, and highlight the value of Long-tailed Ducks (Calengula haemalis) as an umbrella species to represent the movement patterns of multiple sea duck species. We also discuss potential applications of network migration models to conservation prioritization, identification of population units, and integrating different data streams.</description><identifier>ISSN: 1051-0761</identifier><identifier>EISSN: 1939-5582</identifier><identifier>DOI: 10.1002/eap.1919</identifier><identifier>PMID: 31141283</identifier><language>eng</language><publisher>United States: John Wiley and Sons, Inc</publisher><subject>Animal Migration ; Animals ; Aquatic birds ; breeding ; Breeding sites ; Complexity ; Connectivity ; Data transmission ; Ducks ; Ecosystem ; eider ; ENVIRONMENTAL SCIENCES ; Feathers ; flyway ; Graph theory ; Great Lakes ; habitats ; Lakes ; Linkages ; Long‐tailed Duck ; mathematical theory ; Migration ; migratory behavior ; migratory connectivity ; Migratory species ; molt ; Molting ; Nesting ; Network analysis ; New England ; New England region ; North America ; Population structure ; prioritization ; remote sensing ; Rivers ; Saint Lawrence River ; satellites ; Scoter ; sea duck ; Seasons ; stopover ; Telemetry ; Waterfowl ; Wildlife conservation ; wintering grounds</subject><ispartof>Ecological applications, 2019-07, Vol.29 (5), p.1-17</ispartof><rights>2019 The Authors</rights><rights>2019 The Authors. published by Wiley Periodicals, Inc. on behalf of Ecological Society of America</rights><rights>2019 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.</rights><rights>Copyright Ecological Society of America Jul 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5209-9c8639c223d1f6949ea1e6ae27127a5ed76e2cd778bab21d85cea500da3c27993</citedby><cites>FETCH-LOGICAL-c5209-9c8639c223d1f6949ea1e6ae27127a5ed76e2cd778bab21d85cea500da3c27993</cites><orcidid>0000-0003-0358-3240 ; 0000000303583240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26735373$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26735373$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31141283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1523309$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamb, Juliet S.</creatorcontrib><creatorcontrib>Paton, Peter W. C.</creatorcontrib><creatorcontrib>Osenkowski, Jason E.</creatorcontrib><creatorcontrib>Badzinski, Shannon S.</creatorcontrib><creatorcontrib>Berlin, Alicia M.</creatorcontrib><creatorcontrib>Bowman, Tim</creatorcontrib><creatorcontrib>Dwyer, Chris</creatorcontrib><creatorcontrib>Fara, Luke J.</creatorcontrib><creatorcontrib>Gilliland, Scott G.</creatorcontrib><creatorcontrib>Kenow, Kevin</creatorcontrib><creatorcontrib>Lepage, Christine</creatorcontrib><creatorcontrib>Mallory, Mark L.</creatorcontrib><creatorcontrib>Olsen, Glenn H.</creatorcontrib><creatorcontrib>Perry, Matthew C.</creatorcontrib><creatorcontrib>Petrie, Scott A.</creatorcontrib><creatorcontrib>Savard, Jean-Pierre L.</creatorcontrib><creatorcontrib>Savoy, Lucas</creatorcontrib><creatorcontrib>Schummer, Michael</creatorcontrib><creatorcontrib>Spiegel, Caleb S.</creatorcontrib><creatorcontrib>McWilliams, Scott R.</creatorcontrib><creatorcontrib>Univ. of Rhode Island, Kingston, RI (United States)</creatorcontrib><title>Spatially explicit network analysis reveals multi-species annual cycle movement patterns of sea ducks</title><title>Ecological applications</title><addtitle>Ecol Appl</addtitle><description>Conservation of long-distance migratory species poses unique challenges. Migratory connectivity, that is, the extent to which groupings of individuals at breeding sites are maintained in wintering areas, is frequently used to evaluate population structure and assess use of key habitat areas. However, for species with complex or variable annual cycle movements, this traditional bimodal framework of migratory connectivity may be overly simplistic. Like many other waterfowl, sea ducks often travel to specific pre-and post-breeding sites outside their nesting and wintering areas to prepare for migration by feeding extensively and, in some cases, molting their flight feathers. These additional migrations may play a key role in population structure, but are not included in traditional models of migratory connectivity. Network analysis, which applies graph theory to assess linkages between discrete locations or entities, offers a powerful tool for quantitatively assessing the contributions of different sites used throughout the annual cycle to complex spatial networks. We collected satellite telemetry data on annual cycle movements of 672 individual sea ducks of five species from throughout eastern North America and the Great Lakes. From these data, we constructed a multi-species network model of migratory patterns and site use over the course of breeding, molting, wintering, and migratory staging. Our results highlight inter-and intra-specific differences in the patterns and complexity of annual cycle movement patterns, including the central importance of staging and molting sites in James Bay, the St. Lawrence River, and southern New England to multi-species annual cycle habitat linkages, and highlight the value of Long-tailed Ducks (Calengula haemalis) as an umbrella species to represent the movement patterns of multiple sea duck species. We also discuss potential applications of network migration models to conservation prioritization, identification of population units, and integrating different data streams.</description><subject>Animal Migration</subject><subject>Animals</subject><subject>Aquatic birds</subject><subject>breeding</subject><subject>Breeding sites</subject><subject>Complexity</subject><subject>Connectivity</subject><subject>Data transmission</subject><subject>Ducks</subject><subject>Ecosystem</subject><subject>eider</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Feathers</subject><subject>flyway</subject><subject>Graph theory</subject><subject>Great Lakes</subject><subject>habitats</subject><subject>Lakes</subject><subject>Linkages</subject><subject>Long‐tailed Duck</subject><subject>mathematical theory</subject><subject>Migration</subject><subject>migratory behavior</subject><subject>migratory connectivity</subject><subject>Migratory species</subject><subject>molt</subject><subject>Molting</subject><subject>Nesting</subject><subject>Network analysis</subject><subject>New England</subject><subject>New England region</subject><subject>North America</subject><subject>Population structure</subject><subject>prioritization</subject><subject>remote sensing</subject><subject>Rivers</subject><subject>Saint Lawrence River</subject><subject>satellites</subject><subject>Scoter</subject><subject>sea duck</subject><subject>Seasons</subject><subject>stopover</subject><subject>Telemetry</subject><subject>Waterfowl</subject><subject>Wildlife conservation</subject><subject>wintering grounds</subject><issn>1051-0761</issn><issn>1939-5582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEUhoMotlbBP6AEvfFmaj42k8mNUEq1QqGCeh2ymbM220wyJpmt8-_NsutWheYmgfPwnJPzIvSSklNKCHsPZjyliqpH6JgqrhohOva4vomgDZEtPULPcl6TehhjT9ERp3RBWcePEXwdTXHG-xnDr9E76woOUO5iusUmGD9nl3GCDRif8TD54po8gnWQazlMxmM7Ww94iBsYIBRcdQVSyDiucAaD-8ne5ufoyaoK4MX-PkHfP158O79srq4_fT4_u2qsYEQ1ynYtV5Yx3tNVqxYKDIXWAJOUSSOgly0w20vZLc2S0b4TFowgpDfcMqkUP0Efdt5xWg7Q2zpQMl6PyQ0mzToap_-tBHejf8SNbjtBVSeq4M1OEHNxOtdtgL2xMQSwRVPBOCfbLu_2XVL8OUEuenDZgvcmQJyyZrzuXYpObtG3_6HrOKW610oxsVjUzGR3L7Qp5pxgdZiYEr0NWNeA9Tbgir7--4cH8E-iFWh2wJ3zMD8o0hdnX_bCVzt-nUtMB561kgsuOf8NyiO6QQ</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Lamb, Juliet S.</creator><creator>Paton, Peter W. C.</creator><creator>Osenkowski, Jason E.</creator><creator>Badzinski, Shannon S.</creator><creator>Berlin, Alicia M.</creator><creator>Bowman, Tim</creator><creator>Dwyer, Chris</creator><creator>Fara, Luke J.</creator><creator>Gilliland, Scott G.</creator><creator>Kenow, Kevin</creator><creator>Lepage, Christine</creator><creator>Mallory, Mark L.</creator><creator>Olsen, Glenn H.</creator><creator>Perry, Matthew C.</creator><creator>Petrie, Scott A.</creator><creator>Savard, Jean-Pierre L.</creator><creator>Savoy, Lucas</creator><creator>Schummer, Michael</creator><creator>Spiegel, Caleb S.</creator><creator>McWilliams, Scott R.</creator><general>John Wiley and Sons, Inc</general><general>Ecological Society of America</general><general>Wiley Blackwell (John Wiley & Sons)</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0358-3240</orcidid><orcidid>https://orcid.org/0000000303583240</orcidid></search><sort><creationdate>201907</creationdate><title>Spatially explicit network analysis reveals multi-species annual cycle movement patterns of sea ducks</title><author>Lamb, Juliet S. ; Paton, Peter W. C. ; Osenkowski, Jason E. ; Badzinski, Shannon S. ; Berlin, Alicia M. ; Bowman, Tim ; Dwyer, Chris ; Fara, Luke J. ; Gilliland, Scott G. ; Kenow, Kevin ; Lepage, Christine ; Mallory, Mark L. ; Olsen, Glenn H. ; Perry, Matthew C. ; Petrie, Scott A. ; Savard, Jean-Pierre L. ; Savoy, Lucas ; Schummer, Michael ; Spiegel, Caleb S. ; McWilliams, Scott R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5209-9c8639c223d1f6949ea1e6ae27127a5ed76e2cd778bab21d85cea500da3c27993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal Migration</topic><topic>Animals</topic><topic>Aquatic birds</topic><topic>breeding</topic><topic>Breeding sites</topic><topic>Complexity</topic><topic>Connectivity</topic><topic>Data transmission</topic><topic>Ducks</topic><topic>Ecosystem</topic><topic>eider</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Feathers</topic><topic>flyway</topic><topic>Graph theory</topic><topic>Great Lakes</topic><topic>habitats</topic><topic>Lakes</topic><topic>Linkages</topic><topic>Long‐tailed Duck</topic><topic>mathematical theory</topic><topic>Migration</topic><topic>migratory behavior</topic><topic>migratory connectivity</topic><topic>Migratory species</topic><topic>molt</topic><topic>Molting</topic><topic>Nesting</topic><topic>Network analysis</topic><topic>New England</topic><topic>New England region</topic><topic>North America</topic><topic>Population structure</topic><topic>prioritization</topic><topic>remote sensing</topic><topic>Rivers</topic><topic>Saint Lawrence River</topic><topic>satellites</topic><topic>Scoter</topic><topic>sea duck</topic><topic>Seasons</topic><topic>stopover</topic><topic>Telemetry</topic><topic>Waterfowl</topic><topic>Wildlife conservation</topic><topic>wintering grounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamb, Juliet S.</creatorcontrib><creatorcontrib>Paton, Peter W. C.</creatorcontrib><creatorcontrib>Osenkowski, Jason E.</creatorcontrib><creatorcontrib>Badzinski, Shannon S.</creatorcontrib><creatorcontrib>Berlin, Alicia M.</creatorcontrib><creatorcontrib>Bowman, Tim</creatorcontrib><creatorcontrib>Dwyer, Chris</creatorcontrib><creatorcontrib>Fara, Luke J.</creatorcontrib><creatorcontrib>Gilliland, Scott G.</creatorcontrib><creatorcontrib>Kenow, Kevin</creatorcontrib><creatorcontrib>Lepage, Christine</creatorcontrib><creatorcontrib>Mallory, Mark L.</creatorcontrib><creatorcontrib>Olsen, Glenn H.</creatorcontrib><creatorcontrib>Perry, Matthew C.</creatorcontrib><creatorcontrib>Petrie, Scott A.</creatorcontrib><creatorcontrib>Savard, Jean-Pierre L.</creatorcontrib><creatorcontrib>Savoy, Lucas</creatorcontrib><creatorcontrib>Schummer, Michael</creatorcontrib><creatorcontrib>Spiegel, Caleb S.</creatorcontrib><creatorcontrib>McWilliams, Scott R.</creatorcontrib><creatorcontrib>Univ. of Rhode Island, Kingston, RI (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ecological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamb, Juliet S.</au><au>Paton, Peter W. C.</au><au>Osenkowski, Jason E.</au><au>Badzinski, Shannon S.</au><au>Berlin, Alicia M.</au><au>Bowman, Tim</au><au>Dwyer, Chris</au><au>Fara, Luke J.</au><au>Gilliland, Scott G.</au><au>Kenow, Kevin</au><au>Lepage, Christine</au><au>Mallory, Mark L.</au><au>Olsen, Glenn H.</au><au>Perry, Matthew C.</au><au>Petrie, Scott A.</au><au>Savard, Jean-Pierre L.</au><au>Savoy, Lucas</au><au>Schummer, Michael</au><au>Spiegel, Caleb S.</au><au>McWilliams, Scott R.</au><aucorp>Univ. of Rhode Island, Kingston, RI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially explicit network analysis reveals multi-species annual cycle movement patterns of sea ducks</atitle><jtitle>Ecological applications</jtitle><addtitle>Ecol Appl</addtitle><date>2019-07</date><risdate>2019</risdate><volume>29</volume><issue>5</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1051-0761</issn><eissn>1939-5582</eissn><abstract>Conservation of long-distance migratory species poses unique challenges. Migratory connectivity, that is, the extent to which groupings of individuals at breeding sites are maintained in wintering areas, is frequently used to evaluate population structure and assess use of key habitat areas. However, for species with complex or variable annual cycle movements, this traditional bimodal framework of migratory connectivity may be overly simplistic. Like many other waterfowl, sea ducks often travel to specific pre-and post-breeding sites outside their nesting and wintering areas to prepare for migration by feeding extensively and, in some cases, molting their flight feathers. These additional migrations may play a key role in population structure, but are not included in traditional models of migratory connectivity. Network analysis, which applies graph theory to assess linkages between discrete locations or entities, offers a powerful tool for quantitatively assessing the contributions of different sites used throughout the annual cycle to complex spatial networks. We collected satellite telemetry data on annual cycle movements of 672 individual sea ducks of five species from throughout eastern North America and the Great Lakes. From these data, we constructed a multi-species network model of migratory patterns and site use over the course of breeding, molting, wintering, and migratory staging. Our results highlight inter-and intra-specific differences in the patterns and complexity of annual cycle movement patterns, including the central importance of staging and molting sites in James Bay, the St. Lawrence River, and southern New England to multi-species annual cycle habitat linkages, and highlight the value of Long-tailed Ducks (Calengula haemalis) as an umbrella species to represent the movement patterns of multiple sea duck species. We also discuss potential applications of network migration models to conservation prioritization, identification of population units, and integrating different data streams.</abstract><cop>United States</cop><pub>John Wiley and Sons, Inc</pub><pmid>31141283</pmid><doi>10.1002/eap.1919</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0358-3240</orcidid><orcidid>https://orcid.org/0000000303583240</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-0761 |
ispartof | Ecological applications, 2019-07, Vol.29 (5), p.1-17 |
issn | 1051-0761 1939-5582 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6851985 |
source | Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animal Migration Animals Aquatic birds breeding Breeding sites Complexity Connectivity Data transmission Ducks Ecosystem eider ENVIRONMENTAL SCIENCES Feathers flyway Graph theory Great Lakes habitats Lakes Linkages Long‐tailed Duck mathematical theory Migration migratory behavior migratory connectivity Migratory species molt Molting Nesting Network analysis New England New England region North America Population structure prioritization remote sensing Rivers Saint Lawrence River satellites Scoter sea duck Seasons stopover Telemetry Waterfowl Wildlife conservation wintering grounds |
title | Spatially explicit network analysis reveals multi-species annual cycle movement patterns of sea ducks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20explicit%20network%20analysis%20reveals%20multi-species%20annual%20cycle%20movement%20patterns%20of%20sea%20ducks&rft.jtitle=Ecological%20applications&rft.au=Lamb,%20Juliet%20S.&rft.aucorp=Univ.%20of%20Rhode%20Island,%20Kingston,%20RI%20(United%20States)&rft.date=2019-07&rft.volume=29&rft.issue=5&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1051-0761&rft.eissn=1939-5582&rft_id=info:doi/10.1002/eap.1919&rft_dat=%3Cjstor_pubme%3E26735373%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254491978&rft_id=info:pmid/31141283&rft_jstor_id=26735373&rfr_iscdi=true |