Logical measurement-based quantum computation in circuit-QED
We propose a new scheme of measurement-based quantum computation (MBQC) using an error-correcting code against photon-loss in circuit quantum electrodynamics. We describe a specific protocol of logical single-qubit gates given by sequential cavity measurements for logical MBQC and a generalised Schr...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-11, Vol.9 (1), p.16592-11, Article 16592 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 16592 |
container_title | Scientific reports |
container_volume | 9 |
creator | Joo, Jaewoo Lee, Chang-Woo Kono, Shingo Kim, Jaewan |
description | We propose a new scheme of measurement-based quantum computation (MBQC) using an error-correcting code against photon-loss in circuit quantum electrodynamics. We describe a specific protocol of logical single-qubit gates given by sequential cavity measurements for logical MBQC and a generalised Schrödinger cat state is used for a continuous-variable (CV) logical qubit captured in a microwave cavity. To apply an error-correcting scheme on the logical qubit, we utilise a
d
-dimensional quantum system called a qudit. It is assumed that a three CV-qudit entangled state is initially prepared in three jointed cavities and the microwave qudit states are individually controlled, operated, and measured through a readout resonator coupled with an ancillary superconducting qubit. We then examine a practical approach of how to create the CV-qudit cluster state via a cross-Kerr interaction induced by intermediary superconducting qubits between neighbouring cavities under the Jaynes-Cummings Hamiltonian. This approach could be scalable for building 2D logical cluster states and therefore will pave a new pathway of logical MBQC in superconducting circuits toward fault-tolerant quantum computing. |
doi_str_mv | 10.1038/s41598-019-52866-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6851091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314250303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d4e4e7adb95d889a4c80305e2caf044e044b6276945a968abd8c40edd2bf300a3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWrR_wIUMuHETzXOagAhSn1AQQdchk0lrysykTSaC_95oa30sDIRcuF_OPZcDwCFGpxhRcRYZ5lJAhCXkRJQlpFtgQBDjkFBCtn_Ue2AY4xzlw4lkWO6CPYpHWHIhBuB84mfO6KZorY4p2NZ2Pax0tHWxTLrrU1sY3y5Sr3vnu8J1hXHBJNfDx-urA7Az1U20w_W7D55vrp_Gd3DycHs_vpxAw0ashzWzzI50XUleCyE1MwJRxC0xeooYs_lWJRmVknEtS6GrWhiGbF2TakoR0nQfXKx0F6lqbW2yx6AbtQiu1eFNee3U707nXtTMv6pScIwkzgIna4Hgl8nGXrUuGts0urM-RUUoZoRnUzSjx3_QuU-hy-t9UohlimSKrCgTfIzBTjdmMFIf-ahVPirnoz7zUR_SRz_X2Hz5SiMDdAXE3OpmNnzP_kf2Hc8Imz4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314040302</pqid></control><display><type>article</type><title>Logical measurement-based quantum computation in circuit-QED</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Joo, Jaewoo ; Lee, Chang-Woo ; Kono, Shingo ; Kim, Jaewan</creator><creatorcontrib>Joo, Jaewoo ; Lee, Chang-Woo ; Kono, Shingo ; Kim, Jaewan</creatorcontrib><description>We propose a new scheme of measurement-based quantum computation (MBQC) using an error-correcting code against photon-loss in circuit quantum electrodynamics. We describe a specific protocol of logical single-qubit gates given by sequential cavity measurements for logical MBQC and a generalised Schrödinger cat state is used for a continuous-variable (CV) logical qubit captured in a microwave cavity. To apply an error-correcting scheme on the logical qubit, we utilise a
d
-dimensional quantum system called a qudit. It is assumed that a three CV-qudit entangled state is initially prepared in three jointed cavities and the microwave qudit states are individually controlled, operated, and measured through a readout resonator coupled with an ancillary superconducting qubit. We then examine a practical approach of how to create the CV-qudit cluster state via a cross-Kerr interaction induced by intermediary superconducting qubits between neighbouring cavities under the Jaynes-Cummings Hamiltonian. This approach could be scalable for building 2D logical cluster states and therefore will pave a new pathway of logical MBQC in superconducting circuits toward fault-tolerant quantum computing.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-52866-3</identifier><identifier>PMID: 31719588</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/766/483/2802 ; 639/766/483/481 ; Cavities ; Humanities and Social Sciences ; multidisciplinary ; Optics ; Quantum computing ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2019-11, Vol.9 (1), p.16592-11, Article 16592</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d4e4e7adb95d889a4c80305e2caf044e044b6276945a968abd8c40edd2bf300a3</citedby><cites>FETCH-LOGICAL-c474t-d4e4e7adb95d889a4c80305e2caf044e044b6276945a968abd8c40edd2bf300a3</cites><orcidid>0000-0002-7606-572X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851091/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851091/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31719588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joo, Jaewoo</creatorcontrib><creatorcontrib>Lee, Chang-Woo</creatorcontrib><creatorcontrib>Kono, Shingo</creatorcontrib><creatorcontrib>Kim, Jaewan</creatorcontrib><title>Logical measurement-based quantum computation in circuit-QED</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We propose a new scheme of measurement-based quantum computation (MBQC) using an error-correcting code against photon-loss in circuit quantum electrodynamics. We describe a specific protocol of logical single-qubit gates given by sequential cavity measurements for logical MBQC and a generalised Schrödinger cat state is used for a continuous-variable (CV) logical qubit captured in a microwave cavity. To apply an error-correcting scheme on the logical qubit, we utilise a
d
-dimensional quantum system called a qudit. It is assumed that a three CV-qudit entangled state is initially prepared in three jointed cavities and the microwave qudit states are individually controlled, operated, and measured through a readout resonator coupled with an ancillary superconducting qubit. We then examine a practical approach of how to create the CV-qudit cluster state via a cross-Kerr interaction induced by intermediary superconducting qubits between neighbouring cavities under the Jaynes-Cummings Hamiltonian. This approach could be scalable for building 2D logical cluster states and therefore will pave a new pathway of logical MBQC in superconducting circuits toward fault-tolerant quantum computing.</description><subject>119/118</subject><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Cavities</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Optics</subject><subject>Quantum computing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMoWrR_wIUMuHETzXOagAhSn1AQQdchk0lrysykTSaC_95oa30sDIRcuF_OPZcDwCFGpxhRcRYZ5lJAhCXkRJQlpFtgQBDjkFBCtn_Ue2AY4xzlw4lkWO6CPYpHWHIhBuB84mfO6KZorY4p2NZ2Pax0tHWxTLrrU1sY3y5Sr3vnu8J1hXHBJNfDx-urA7Az1U20w_W7D55vrp_Gd3DycHs_vpxAw0ashzWzzI50XUleCyE1MwJRxC0xeooYs_lWJRmVknEtS6GrWhiGbF2TakoR0nQfXKx0F6lqbW2yx6AbtQiu1eFNee3U707nXtTMv6pScIwkzgIna4Hgl8nGXrUuGts0urM-RUUoZoRnUzSjx3_QuU-hy-t9UohlimSKrCgTfIzBTjdmMFIf-ahVPirnoz7zUR_SRz_X2Hz5SiMDdAXE3OpmNnzP_kf2Hc8Imz4</recordid><startdate>20191112</startdate><enddate>20191112</enddate><creator>Joo, Jaewoo</creator><creator>Lee, Chang-Woo</creator><creator>Kono, Shingo</creator><creator>Kim, Jaewan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7606-572X</orcidid></search><sort><creationdate>20191112</creationdate><title>Logical measurement-based quantum computation in circuit-QED</title><author>Joo, Jaewoo ; Lee, Chang-Woo ; Kono, Shingo ; Kim, Jaewan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d4e4e7adb95d889a4c80305e2caf044e044b6276945a968abd8c40edd2bf300a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>119/118</topic><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Cavities</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Optics</topic><topic>Quantum computing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joo, Jaewoo</creatorcontrib><creatorcontrib>Lee, Chang-Woo</creatorcontrib><creatorcontrib>Kono, Shingo</creatorcontrib><creatorcontrib>Kim, Jaewan</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joo, Jaewoo</au><au>Lee, Chang-Woo</au><au>Kono, Shingo</au><au>Kim, Jaewan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logical measurement-based quantum computation in circuit-QED</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-11-12</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>16592</spage><epage>11</epage><pages>16592-11</pages><artnum>16592</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We propose a new scheme of measurement-based quantum computation (MBQC) using an error-correcting code against photon-loss in circuit quantum electrodynamics. We describe a specific protocol of logical single-qubit gates given by sequential cavity measurements for logical MBQC and a generalised Schrödinger cat state is used for a continuous-variable (CV) logical qubit captured in a microwave cavity. To apply an error-correcting scheme on the logical qubit, we utilise a
d
-dimensional quantum system called a qudit. It is assumed that a three CV-qudit entangled state is initially prepared in three jointed cavities and the microwave qudit states are individually controlled, operated, and measured through a readout resonator coupled with an ancillary superconducting qubit. We then examine a practical approach of how to create the CV-qudit cluster state via a cross-Kerr interaction induced by intermediary superconducting qubits between neighbouring cavities under the Jaynes-Cummings Hamiltonian. This approach could be scalable for building 2D logical cluster states and therefore will pave a new pathway of logical MBQC in superconducting circuits toward fault-tolerant quantum computing.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31719588</pmid><doi>10.1038/s41598-019-52866-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7606-572X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-11, Vol.9 (1), p.16592-11, Article 16592 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6851091 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 119/118 639/766/483/2802 639/766/483/481 Cavities Humanities and Social Sciences multidisciplinary Optics Quantum computing Science Science (multidisciplinary) |
title | Logical measurement-based quantum computation in circuit-QED |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logical%20measurement-based%20quantum%20computation%20in%20circuit-QED&rft.jtitle=Scientific%20reports&rft.au=Joo,%20Jaewoo&rft.date=2019-11-12&rft.volume=9&rft.issue=1&rft.spage=16592&rft.epage=11&rft.pages=16592-11&rft.artnum=16592&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-52866-3&rft_dat=%3Cproquest_pubme%3E2314250303%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314040302&rft_id=info:pmid/31719588&rfr_iscdi=true |