Arginine‐ but not alanine‐rich carboxy‐termini trigger nuclear translocation of mutant keratin 10 in ichthyosis with confetti

Ichthyosis with confetti (IWC) is a genodermatosis associated with dominant‐negative variants in keratin 10 (KRT10) or keratin 1 (KRT1). These frameshift variants result in extended aberrant proteins, localized to the nucleus rather than the cytoplasm. This mislocalization is thought to occur as a r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2019-12, Vol.23 (12), p.8442-8452
Hauptverfasser: Renz, Patricia, Imahorn, Elias, Spoerri, Iris, Aushev, Magomet, March, Oliver P., Wariwoda, Hedwig, Von Arb, Sarah, Volz, Andreas, Itin, Peter H., Reichelt, Julia, Burger, Bettina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8452
container_issue 12
container_start_page 8442
container_title Journal of cellular and molecular medicine
container_volume 23
creator Renz, Patricia
Imahorn, Elias
Spoerri, Iris
Aushev, Magomet
March, Oliver P.
Wariwoda, Hedwig
Von Arb, Sarah
Volz, Andreas
Itin, Peter H.
Reichelt, Julia
Burger, Bettina
description Ichthyosis with confetti (IWC) is a genodermatosis associated with dominant‐negative variants in keratin 10 (KRT10) or keratin 1 (KRT1). These frameshift variants result in extended aberrant proteins, localized to the nucleus rather than the cytoplasm. This mislocalization is thought to occur as a result of the altered carboxy (C)‐terminus, from poly‐glycine to either a poly‐arginine or ‐alanine tail. Previous studies on the type of C‐terminus and subcellular localization of the respective mutant protein are divergent. In order to fully elucidate the pathomechanism of IWC, a greater understanding is critical. This study aimed to establish the consequences for localization and intermediate filament formation of altered keratin 10 (K10) C‐termini. To achieve this, plasmids expressing distinct KRT10 variants were generated. Sequences encoded all possible reading frames of the K10 C‐terminus as well as a nonsense variant. A keratinocyte line was transfected with these plasmids. Additionally, gene editing was utilized to introduce frameshift variants in exon 6 and exon 7 at the endogenous KRT10 locus. Cellular localization of aberrant K10 was observed via immunofluorescence using various antibodies. In each setting, immunofluorescence analysis demonstrated aberrant nuclear localization of K10 featuring an arginine‐rich C‐terminus. However, this was not observed with K10 featuring an alanine‐rich C‐terminus. Instead, the protein displayed cytoplasmic localization, consistent with wild‐type and truncated forms of K10. This study demonstrates that, of the various 3′ frameshift variants of KRT10, exclusively arginine‐rich C‐termini lead to nuclear localization of K10.
doi_str_mv 10.1111/jcmm.14727
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6850952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313800259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4487-43070c532a4b04fd3fa942e37187a9b0779f2144e8b6b99d00fcdd422de2c52b3</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhS1EREJgwwGQJTYIaYL_um1vkKIRP4kSsYG15Xa7Zzx028F2E2aHxAU4IyehkhkiYIEXdlX509OzH0JPKDmhsF5u3DSdUCGZvIeOaKPYQmgu7u9rqrg6RA9L2RDCW8r1A3TIacsVF-0R-n6aVyGG6H9--4G7ueKYKraj3Y9ycGvsbO7S1y201ecJaFxzWK18xnF2o7cZehvLmJytIUWcBjzN1caKP_kMo4gpwbCDVl1vUwkFX4cKuikOvtbwCB0Mdiz-8f48Rh_fvP6wfLe4eP_2bHl6sXBCKLkQnEjiGs6s6IgYej5YLZjnkippdUek1AOjQnjVtZ3WPSGD63vBWO-Za1jHj9Grne7V3E2-dz6C79Fc5TDZvDXJBvP3TQxrs0pfTKsaohsGAs_3Ajl9nn2pZgrF-RG-y6e5GAYOJddaS0Cf_YNu0pwjPA8oyhUhrNFAvdhRLqdSsh_uzFBibrI1N9ma22wBfvqn_Tv0d5gA0B1wHUa__Y-UOV9eXu5EfwHvXLTD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313800259</pqid></control><display><type>article</type><title>Arginine‐ but not alanine‐rich carboxy‐termini trigger nuclear translocation of mutant keratin 10 in ichthyosis with confetti</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Renz, Patricia ; Imahorn, Elias ; Spoerri, Iris ; Aushev, Magomet ; March, Oliver P. ; Wariwoda, Hedwig ; Von Arb, Sarah ; Volz, Andreas ; Itin, Peter H. ; Reichelt, Julia ; Burger, Bettina</creator><creatorcontrib>Renz, Patricia ; Imahorn, Elias ; Spoerri, Iris ; Aushev, Magomet ; March, Oliver P. ; Wariwoda, Hedwig ; Von Arb, Sarah ; Volz, Andreas ; Itin, Peter H. ; Reichelt, Julia ; Burger, Bettina</creatorcontrib><description>Ichthyosis with confetti (IWC) is a genodermatosis associated with dominant‐negative variants in keratin 10 (KRT10) or keratin 1 (KRT1). These frameshift variants result in extended aberrant proteins, localized to the nucleus rather than the cytoplasm. This mislocalization is thought to occur as a result of the altered carboxy (C)‐terminus, from poly‐glycine to either a poly‐arginine or ‐alanine tail. Previous studies on the type of C‐terminus and subcellular localization of the respective mutant protein are divergent. In order to fully elucidate the pathomechanism of IWC, a greater understanding is critical. This study aimed to establish the consequences for localization and intermediate filament formation of altered keratin 10 (K10) C‐termini. To achieve this, plasmids expressing distinct KRT10 variants were generated. Sequences encoded all possible reading frames of the K10 C‐terminus as well as a nonsense variant. A keratinocyte line was transfected with these plasmids. Additionally, gene editing was utilized to introduce frameshift variants in exon 6 and exon 7 at the endogenous KRT10 locus. Cellular localization of aberrant K10 was observed via immunofluorescence using various antibodies. In each setting, immunofluorescence analysis demonstrated aberrant nuclear localization of K10 featuring an arginine‐rich C‐terminus. However, this was not observed with K10 featuring an alanine‐rich C‐terminus. Instead, the protein displayed cytoplasmic localization, consistent with wild‐type and truncated forms of K10. This study demonstrates that, of the various 3′ frameshift variants of KRT10, exclusively arginine‐rich C‐termini lead to nuclear localization of K10.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.14727</identifier><identifier>PMID: 31638346</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Active Transport, Cell Nucleus - genetics ; Alanine ; Alanine - genetics ; Alanine - metabolism ; alanine‐rich C‐terminus ; Amino acids ; Arginine ; Arginine - genetics ; Arginine - metabolism ; arginine‐rich C‐terminus ; carboxy terminus ; Cell Line ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Cytoplasm ; Exons - genetics ; Frameshift Mutation ; Genetic modification ; Genodermatosis ; Genome editing ; Glycine ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Humans ; Ichthyosiform Erythroderma, Congenital - genetics ; Ichthyosiform Erythroderma, Congenital - metabolism ; Ichthyosiform Erythroderma, Congenital - pathology ; Ichthyosis ; ichthyosis with confetti ; Immunofluorescence ; Keratin ; keratin 10 ; Keratin-10 - chemistry ; Keratin-10 - genetics ; Keratin-10 - metabolism ; Keratinocytes - metabolism ; KRT10 ; Localization ; Microscopy, Confocal ; Mutation ; nuclear localization ; Nuclear transport ; Original ; Patients ; Plasmids ; Translocation</subject><ispartof>Journal of cellular and molecular medicine, 2019-12, Vol.23 (12), p.8442-8452</ispartof><rights>2019 The Authors. published by John Wiley &amp; Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2019 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley &amp; Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4487-43070c532a4b04fd3fa942e37187a9b0779f2144e8b6b99d00fcdd422de2c52b3</citedby><cites>FETCH-LOGICAL-c4487-43070c532a4b04fd3fa942e37187a9b0779f2144e8b6b99d00fcdd422de2c52b3</cites><orcidid>0000-0002-7686-0176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850952/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850952/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31638346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Renz, Patricia</creatorcontrib><creatorcontrib>Imahorn, Elias</creatorcontrib><creatorcontrib>Spoerri, Iris</creatorcontrib><creatorcontrib>Aushev, Magomet</creatorcontrib><creatorcontrib>March, Oliver P.</creatorcontrib><creatorcontrib>Wariwoda, Hedwig</creatorcontrib><creatorcontrib>Von Arb, Sarah</creatorcontrib><creatorcontrib>Volz, Andreas</creatorcontrib><creatorcontrib>Itin, Peter H.</creatorcontrib><creatorcontrib>Reichelt, Julia</creatorcontrib><creatorcontrib>Burger, Bettina</creatorcontrib><title>Arginine‐ but not alanine‐rich carboxy‐termini trigger nuclear translocation of mutant keratin 10 in ichthyosis with confetti</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Ichthyosis with confetti (IWC) is a genodermatosis associated with dominant‐negative variants in keratin 10 (KRT10) or keratin 1 (KRT1). These frameshift variants result in extended aberrant proteins, localized to the nucleus rather than the cytoplasm. This mislocalization is thought to occur as a result of the altered carboxy (C)‐terminus, from poly‐glycine to either a poly‐arginine or ‐alanine tail. Previous studies on the type of C‐terminus and subcellular localization of the respective mutant protein are divergent. In order to fully elucidate the pathomechanism of IWC, a greater understanding is critical. This study aimed to establish the consequences for localization and intermediate filament formation of altered keratin 10 (K10) C‐termini. To achieve this, plasmids expressing distinct KRT10 variants were generated. Sequences encoded all possible reading frames of the K10 C‐terminus as well as a nonsense variant. A keratinocyte line was transfected with these plasmids. Additionally, gene editing was utilized to introduce frameshift variants in exon 6 and exon 7 at the endogenous KRT10 locus. Cellular localization of aberrant K10 was observed via immunofluorescence using various antibodies. In each setting, immunofluorescence analysis demonstrated aberrant nuclear localization of K10 featuring an arginine‐rich C‐terminus. However, this was not observed with K10 featuring an alanine‐rich C‐terminus. Instead, the protein displayed cytoplasmic localization, consistent with wild‐type and truncated forms of K10. This study demonstrates that, of the various 3′ frameshift variants of KRT10, exclusively arginine‐rich C‐termini lead to nuclear localization of K10.</description><subject>Active Transport, Cell Nucleus - genetics</subject><subject>Alanine</subject><subject>Alanine - genetics</subject><subject>Alanine - metabolism</subject><subject>alanine‐rich C‐terminus</subject><subject>Amino acids</subject><subject>Arginine</subject><subject>Arginine - genetics</subject><subject>Arginine - metabolism</subject><subject>arginine‐rich C‐terminus</subject><subject>carboxy terminus</subject><subject>Cell Line</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytoplasm</subject><subject>Exons - genetics</subject><subject>Frameshift Mutation</subject><subject>Genetic modification</subject><subject>Genodermatosis</subject><subject>Genome editing</subject><subject>Glycine</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>Ichthyosiform Erythroderma, Congenital - genetics</subject><subject>Ichthyosiform Erythroderma, Congenital - metabolism</subject><subject>Ichthyosiform Erythroderma, Congenital - pathology</subject><subject>Ichthyosis</subject><subject>ichthyosis with confetti</subject><subject>Immunofluorescence</subject><subject>Keratin</subject><subject>keratin 10</subject><subject>Keratin-10 - chemistry</subject><subject>Keratin-10 - genetics</subject><subject>Keratin-10 - metabolism</subject><subject>Keratinocytes - metabolism</subject><subject>KRT10</subject><subject>Localization</subject><subject>Microscopy, Confocal</subject><subject>Mutation</subject><subject>nuclear localization</subject><subject>Nuclear transport</subject><subject>Original</subject><subject>Patients</subject><subject>Plasmids</subject><subject>Translocation</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1uFDEQhS1EREJgwwGQJTYIaYL_um1vkKIRP4kSsYG15Xa7Zzx028F2E2aHxAU4IyehkhkiYIEXdlX509OzH0JPKDmhsF5u3DSdUCGZvIeOaKPYQmgu7u9rqrg6RA9L2RDCW8r1A3TIacsVF-0R-n6aVyGG6H9--4G7ueKYKraj3Y9ycGvsbO7S1y201ecJaFxzWK18xnF2o7cZehvLmJytIUWcBjzN1caKP_kMo4gpwbCDVl1vUwkFX4cKuikOvtbwCB0Mdiz-8f48Rh_fvP6wfLe4eP_2bHl6sXBCKLkQnEjiGs6s6IgYej5YLZjnkippdUek1AOjQnjVtZ3WPSGD63vBWO-Za1jHj9Grne7V3E2-dz6C79Fc5TDZvDXJBvP3TQxrs0pfTKsaohsGAs_3Ajl9nn2pZgrF-RG-y6e5GAYOJddaS0Cf_YNu0pwjPA8oyhUhrNFAvdhRLqdSsh_uzFBibrI1N9ma22wBfvqn_Tv0d5gA0B1wHUa__Y-UOV9eXu5EfwHvXLTD</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Renz, Patricia</creator><creator>Imahorn, Elias</creator><creator>Spoerri, Iris</creator><creator>Aushev, Magomet</creator><creator>March, Oliver P.</creator><creator>Wariwoda, Hedwig</creator><creator>Von Arb, Sarah</creator><creator>Volz, Andreas</creator><creator>Itin, Peter H.</creator><creator>Reichelt, Julia</creator><creator>Burger, Bettina</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7686-0176</orcidid></search><sort><creationdate>201912</creationdate><title>Arginine‐ but not alanine‐rich carboxy‐termini trigger nuclear translocation of mutant keratin 10 in ichthyosis with confetti</title><author>Renz, Patricia ; Imahorn, Elias ; Spoerri, Iris ; Aushev, Magomet ; March, Oliver P. ; Wariwoda, Hedwig ; Von Arb, Sarah ; Volz, Andreas ; Itin, Peter H. ; Reichelt, Julia ; Burger, Bettina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4487-43070c532a4b04fd3fa942e37187a9b0779f2144e8b6b99d00fcdd422de2c52b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active Transport, Cell Nucleus - genetics</topic><topic>Alanine</topic><topic>Alanine - genetics</topic><topic>Alanine - metabolism</topic><topic>alanine‐rich C‐terminus</topic><topic>Amino acids</topic><topic>Arginine</topic><topic>Arginine - genetics</topic><topic>Arginine - metabolism</topic><topic>arginine‐rich C‐terminus</topic><topic>carboxy terminus</topic><topic>Cell Line</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytoplasm</topic><topic>Exons - genetics</topic><topic>Frameshift Mutation</topic><topic>Genetic modification</topic><topic>Genodermatosis</topic><topic>Genome editing</topic><topic>Glycine</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>Ichthyosiform Erythroderma, Congenital - genetics</topic><topic>Ichthyosiform Erythroderma, Congenital - metabolism</topic><topic>Ichthyosiform Erythroderma, Congenital - pathology</topic><topic>Ichthyosis</topic><topic>ichthyosis with confetti</topic><topic>Immunofluorescence</topic><topic>Keratin</topic><topic>keratin 10</topic><topic>Keratin-10 - chemistry</topic><topic>Keratin-10 - genetics</topic><topic>Keratin-10 - metabolism</topic><topic>Keratinocytes - metabolism</topic><topic>KRT10</topic><topic>Localization</topic><topic>Microscopy, Confocal</topic><topic>Mutation</topic><topic>nuclear localization</topic><topic>Nuclear transport</topic><topic>Original</topic><topic>Patients</topic><topic>Plasmids</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renz, Patricia</creatorcontrib><creatorcontrib>Imahorn, Elias</creatorcontrib><creatorcontrib>Spoerri, Iris</creatorcontrib><creatorcontrib>Aushev, Magomet</creatorcontrib><creatorcontrib>March, Oliver P.</creatorcontrib><creatorcontrib>Wariwoda, Hedwig</creatorcontrib><creatorcontrib>Von Arb, Sarah</creatorcontrib><creatorcontrib>Volz, Andreas</creatorcontrib><creatorcontrib>Itin, Peter H.</creatorcontrib><creatorcontrib>Reichelt, Julia</creatorcontrib><creatorcontrib>Burger, Bettina</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renz, Patricia</au><au>Imahorn, Elias</au><au>Spoerri, Iris</au><au>Aushev, Magomet</au><au>March, Oliver P.</au><au>Wariwoda, Hedwig</au><au>Von Arb, Sarah</au><au>Volz, Andreas</au><au>Itin, Peter H.</au><au>Reichelt, Julia</au><au>Burger, Bettina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arginine‐ but not alanine‐rich carboxy‐termini trigger nuclear translocation of mutant keratin 10 in ichthyosis with confetti</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2019-12</date><risdate>2019</risdate><volume>23</volume><issue>12</issue><spage>8442</spage><epage>8452</epage><pages>8442-8452</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Ichthyosis with confetti (IWC) is a genodermatosis associated with dominant‐negative variants in keratin 10 (KRT10) or keratin 1 (KRT1). These frameshift variants result in extended aberrant proteins, localized to the nucleus rather than the cytoplasm. This mislocalization is thought to occur as a result of the altered carboxy (C)‐terminus, from poly‐glycine to either a poly‐arginine or ‐alanine tail. Previous studies on the type of C‐terminus and subcellular localization of the respective mutant protein are divergent. In order to fully elucidate the pathomechanism of IWC, a greater understanding is critical. This study aimed to establish the consequences for localization and intermediate filament formation of altered keratin 10 (K10) C‐termini. To achieve this, plasmids expressing distinct KRT10 variants were generated. Sequences encoded all possible reading frames of the K10 C‐terminus as well as a nonsense variant. A keratinocyte line was transfected with these plasmids. Additionally, gene editing was utilized to introduce frameshift variants in exon 6 and exon 7 at the endogenous KRT10 locus. Cellular localization of aberrant K10 was observed via immunofluorescence using various antibodies. In each setting, immunofluorescence analysis demonstrated aberrant nuclear localization of K10 featuring an arginine‐rich C‐terminus. However, this was not observed with K10 featuring an alanine‐rich C‐terminus. Instead, the protein displayed cytoplasmic localization, consistent with wild‐type and truncated forms of K10. This study demonstrates that, of the various 3′ frameshift variants of KRT10, exclusively arginine‐rich C‐termini lead to nuclear localization of K10.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31638346</pmid><doi>10.1111/jcmm.14727</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7686-0176</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2019-12, Vol.23 (12), p.8442-8452
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6850952
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Active Transport, Cell Nucleus - genetics
Alanine
Alanine - genetics
Alanine - metabolism
alanine‐rich C‐terminus
Amino acids
Arginine
Arginine - genetics
Arginine - metabolism
arginine‐rich C‐terminus
carboxy terminus
Cell Line
Cell Nucleus - genetics
Cell Nucleus - metabolism
Cytoplasm
Exons - genetics
Frameshift Mutation
Genetic modification
Genodermatosis
Genome editing
Glycine
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Humans
Ichthyosiform Erythroderma, Congenital - genetics
Ichthyosiform Erythroderma, Congenital - metabolism
Ichthyosiform Erythroderma, Congenital - pathology
Ichthyosis
ichthyosis with confetti
Immunofluorescence
Keratin
keratin 10
Keratin-10 - chemistry
Keratin-10 - genetics
Keratin-10 - metabolism
Keratinocytes - metabolism
KRT10
Localization
Microscopy, Confocal
Mutation
nuclear localization
Nuclear transport
Original
Patients
Plasmids
Translocation
title Arginine‐ but not alanine‐rich carboxy‐termini trigger nuclear translocation of mutant keratin 10 in ichthyosis with confetti
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arginine%E2%80%90%20but%20not%20alanine%E2%80%90rich%20carboxy%E2%80%90termini%20trigger%20nuclear%20translocation%20of%20mutant%20keratin%2010%20in%20ichthyosis%20with%20confetti&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Renz,%20Patricia&rft.date=2019-12&rft.volume=23&rft.issue=12&rft.spage=8442&rft.epage=8452&rft.pages=8442-8452&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.14727&rft_dat=%3Cproquest_pubme%3E2313800259%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313800259&rft_id=info:pmid/31638346&rfr_iscdi=true