Real-time health monitoring through urine metabolomics
Current healthcare practices are reactive and based on limited physiological information collected months or years apart. By enabling patients and healthy consumers access to continuous measurements of health, wearable devices and digital medicine stand to realize highly personalized and preventativ...
Gespeichert in:
Veröffentlicht in: | NPJ digital medicine 2019-11, Vol.2 (1), p.109-109, Article 109 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109 |
---|---|
container_issue | 1 |
container_start_page | 109 |
container_title | NPJ digital medicine |
container_volume | 2 |
creator | Miller, Ian J. Peters, Sean R. Overmyer, Katherine A. Paulson, Brett R. Westphall, Michael S. Coon, Joshua J. |
description | Current healthcare practices are reactive and based on limited physiological information collected months or years apart. By enabling patients and healthy consumers access to continuous measurements of health, wearable devices and digital medicine stand to realize highly personalized and preventative care. However, most current digital technologies provide information on a limited set of physiological traits, such as heart rate and step count, which alone offer little insight into the etiology of most diseases. Here we propose to integrate data from biohealth smartphone applications with continuous metabolic phenotypes derived from urine metabolites. This combination of molecular phenotypes with quantitative measurements of lifestyle reflect the biological consequences of human behavior in real time. We present data from an observational study involving two healthy subjects and discuss the challenges, opportunities, and implications of integrating this new layer of physiological information into digital medicine. Though our dataset is limited to two subjects, our analysis (also available through an interactive web-based visualization tool) provides an initial framework to monitor lifestyle factors, such as nutrition, drug metabolism, exercise, and sleep using urine metabolites. |
doi_str_mv | 10.1038/s41746-019-0185-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6848197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528862332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-958717e9e87d809873a70b8e06dbe23669cf0bee11a96ce4add4db2ee21e8ee73</originalsourceid><addsrcrecordid>eNp1UdtKw0AQXUSxpfYDfAv44kt0b9nLiyDFGxQE0edlk0ybLUm27iZC_96EFm_gwzAzzDmHmTkInRN8RTBT15ETyUWKiR5CZenuCE0p0yoVLKPHP-oJmse4wRhTzJXm4hRNGJFUcSKmSLyArdPONZBUQ9VVSeNb1_ng2nXSVcH36yrphw6SBjqb-9o3rohn6GRl6wjzQ56ht_u718Vjunx-eFrcLtMiI7JLdaYkkaBByVJhrSSzEucKsChzoEwIXaxwDkCI1aIAbsuSlzkFoAQUgGQzdLPX3fZ5A2UBbRdsbbbBNTbsjLfO_J60rjJr_2GE4oroUeDyIBD8ew-xM42LBdS1bcH30VBGMqy05nqAXvyBbnwf2uE8QzOqlKCM0QFF9qgi-BgDrL6WIdiMxpi9MWYwxozGmN3AoXtO3I5_hfCt_D_pE2IQkDU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528862332</pqid></control><display><type>article</type><title>Real-time health monitoring through urine metabolomics</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Miller, Ian J. ; Peters, Sean R. ; Overmyer, Katherine A. ; Paulson, Brett R. ; Westphall, Michael S. ; Coon, Joshua J.</creator><creatorcontrib>Miller, Ian J. ; Peters, Sean R. ; Overmyer, Katherine A. ; Paulson, Brett R. ; Westphall, Michael S. ; Coon, Joshua J.</creatorcontrib><description>Current healthcare practices are reactive and based on limited physiological information collected months or years apart. By enabling patients and healthy consumers access to continuous measurements of health, wearable devices and digital medicine stand to realize highly personalized and preventative care. However, most current digital technologies provide information on a limited set of physiological traits, such as heart rate and step count, which alone offer little insight into the etiology of most diseases. Here we propose to integrate data from biohealth smartphone applications with continuous metabolic phenotypes derived from urine metabolites. This combination of molecular phenotypes with quantitative measurements of lifestyle reflect the biological consequences of human behavior in real time. We present data from an observational study involving two healthy subjects and discuss the challenges, opportunities, and implications of integrating this new layer of physiological information into digital medicine. Though our dataset is limited to two subjects, our analysis (also available through an interactive web-based visualization tool) provides an initial framework to monitor lifestyle factors, such as nutrition, drug metabolism, exercise, and sleep using urine metabolites.</description><identifier>ISSN: 2398-6352</identifier><identifier>EISSN: 2398-6352</identifier><identifier>DOI: 10.1038/s41746-019-0185-y</identifier><identifier>PMID: 31728416</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/320 ; 639/638/11/296 ; Biomedicine ; Biotechnology ; Digital technology ; Health care ; Health informatics ; Medicine ; Medicine & Public Health ; Metabolites ; Physiology ; Urine</subject><ispartof>NPJ digital medicine, 2019-11, Vol.2 (1), p.109-109, Article 109</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-958717e9e87d809873a70b8e06dbe23669cf0bee11a96ce4add4db2ee21e8ee73</citedby><cites>FETCH-LOGICAL-c517t-958717e9e87d809873a70b8e06dbe23669cf0bee11a96ce4add4db2ee21e8ee73</cites><orcidid>0000-0001-5084-9035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848197/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848197/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,41111,42180,51567,53782,53784</link.rule.ids></links><search><creatorcontrib>Miller, Ian J.</creatorcontrib><creatorcontrib>Peters, Sean R.</creatorcontrib><creatorcontrib>Overmyer, Katherine A.</creatorcontrib><creatorcontrib>Paulson, Brett R.</creatorcontrib><creatorcontrib>Westphall, Michael S.</creatorcontrib><creatorcontrib>Coon, Joshua J.</creatorcontrib><title>Real-time health monitoring through urine metabolomics</title><title>NPJ digital medicine</title><addtitle>npj Digit. Med</addtitle><description>Current healthcare practices are reactive and based on limited physiological information collected months or years apart. By enabling patients and healthy consumers access to continuous measurements of health, wearable devices and digital medicine stand to realize highly personalized and preventative care. However, most current digital technologies provide information on a limited set of physiological traits, such as heart rate and step count, which alone offer little insight into the etiology of most diseases. Here we propose to integrate data from biohealth smartphone applications with continuous metabolic phenotypes derived from urine metabolites. This combination of molecular phenotypes with quantitative measurements of lifestyle reflect the biological consequences of human behavior in real time. We present data from an observational study involving two healthy subjects and discuss the challenges, opportunities, and implications of integrating this new layer of physiological information into digital medicine. Though our dataset is limited to two subjects, our analysis (also available through an interactive web-based visualization tool) provides an initial framework to monitor lifestyle factors, such as nutrition, drug metabolism, exercise, and sleep using urine metabolites.</description><subject>631/61/320</subject><subject>639/638/11/296</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Digital technology</subject><subject>Health care</subject><subject>Health informatics</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolites</subject><subject>Physiology</subject><subject>Urine</subject><issn>2398-6352</issn><issn>2398-6352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UdtKw0AQXUSxpfYDfAv44kt0b9nLiyDFGxQE0edlk0ybLUm27iZC_96EFm_gwzAzzDmHmTkInRN8RTBT15ETyUWKiR5CZenuCE0p0yoVLKPHP-oJmse4wRhTzJXm4hRNGJFUcSKmSLyArdPONZBUQ9VVSeNb1_ng2nXSVcH36yrphw6SBjqb-9o3rohn6GRl6wjzQ56ht_u718Vjunx-eFrcLtMiI7JLdaYkkaBByVJhrSSzEucKsChzoEwIXaxwDkCI1aIAbsuSlzkFoAQUgGQzdLPX3fZ5A2UBbRdsbbbBNTbsjLfO_J60rjJr_2GE4oroUeDyIBD8ew-xM42LBdS1bcH30VBGMqy05nqAXvyBbnwf2uE8QzOqlKCM0QFF9qgi-BgDrL6WIdiMxpi9MWYwxozGmN3AoXtO3I5_hfCt_D_pE2IQkDU</recordid><startdate>20191111</startdate><enddate>20191111</enddate><creator>Miller, Ian J.</creator><creator>Peters, Sean R.</creator><creator>Overmyer, Katherine A.</creator><creator>Paulson, Brett R.</creator><creator>Westphall, Michael S.</creator><creator>Coon, Joshua J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5084-9035</orcidid></search><sort><creationdate>20191111</creationdate><title>Real-time health monitoring through urine metabolomics</title><author>Miller, Ian J. ; Peters, Sean R. ; Overmyer, Katherine A. ; Paulson, Brett R. ; Westphall, Michael S. ; Coon, Joshua J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-958717e9e87d809873a70b8e06dbe23669cf0bee11a96ce4add4db2ee21e8ee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/61/320</topic><topic>639/638/11/296</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Digital technology</topic><topic>Health care</topic><topic>Health informatics</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolites</topic><topic>Physiology</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Ian J.</creatorcontrib><creatorcontrib>Peters, Sean R.</creatorcontrib><creatorcontrib>Overmyer, Katherine A.</creatorcontrib><creatorcontrib>Paulson, Brett R.</creatorcontrib><creatorcontrib>Westphall, Michael S.</creatorcontrib><creatorcontrib>Coon, Joshua J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NPJ digital medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Ian J.</au><au>Peters, Sean R.</au><au>Overmyer, Katherine A.</au><au>Paulson, Brett R.</au><au>Westphall, Michael S.</au><au>Coon, Joshua J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time health monitoring through urine metabolomics</atitle><jtitle>NPJ digital medicine</jtitle><stitle>npj Digit. Med</stitle><date>2019-11-11</date><risdate>2019</risdate><volume>2</volume><issue>1</issue><spage>109</spage><epage>109</epage><pages>109-109</pages><artnum>109</artnum><issn>2398-6352</issn><eissn>2398-6352</eissn><abstract>Current healthcare practices are reactive and based on limited physiological information collected months or years apart. By enabling patients and healthy consumers access to continuous measurements of health, wearable devices and digital medicine stand to realize highly personalized and preventative care. However, most current digital technologies provide information on a limited set of physiological traits, such as heart rate and step count, which alone offer little insight into the etiology of most diseases. Here we propose to integrate data from biohealth smartphone applications with continuous metabolic phenotypes derived from urine metabolites. This combination of molecular phenotypes with quantitative measurements of lifestyle reflect the biological consequences of human behavior in real time. We present data from an observational study involving two healthy subjects and discuss the challenges, opportunities, and implications of integrating this new layer of physiological information into digital medicine. Though our dataset is limited to two subjects, our analysis (also available through an interactive web-based visualization tool) provides an initial framework to monitor lifestyle factors, such as nutrition, drug metabolism, exercise, and sleep using urine metabolites.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31728416</pmid><doi>10.1038/s41746-019-0185-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5084-9035</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2398-6352 |
ispartof | NPJ digital medicine, 2019-11, Vol.2 (1), p.109-109, Article 109 |
issn | 2398-6352 2398-6352 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6848197 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 631/61/320 639/638/11/296 Biomedicine Biotechnology Digital technology Health care Health informatics Medicine Medicine & Public Health Metabolites Physiology Urine |
title | Real-time health monitoring through urine metabolomics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20health%20monitoring%20through%20urine%20metabolomics&rft.jtitle=NPJ%20digital%20medicine&rft.au=Miller,%20Ian%20J.&rft.date=2019-11-11&rft.volume=2&rft.issue=1&rft.spage=109&rft.epage=109&rft.pages=109-109&rft.artnum=109&rft.issn=2398-6352&rft.eissn=2398-6352&rft_id=info:doi/10.1038/s41746-019-0185-y&rft_dat=%3Cproquest_pubme%3E2528862332%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528862332&rft_id=info:pmid/31728416&rfr_iscdi=true |