Real-time health monitoring through urine metabolomics

Current healthcare practices are reactive and based on limited physiological information collected months or years apart. By enabling patients and healthy consumers access to continuous measurements of health, wearable devices and digital medicine stand to realize highly personalized and preventativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ digital medicine 2019-11, Vol.2 (1), p.109-109, Article 109
Hauptverfasser: Miller, Ian J., Peters, Sean R., Overmyer, Katherine A., Paulson, Brett R., Westphall, Michael S., Coon, Joshua J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue 1
container_start_page 109
container_title NPJ digital medicine
container_volume 2
creator Miller, Ian J.
Peters, Sean R.
Overmyer, Katherine A.
Paulson, Brett R.
Westphall, Michael S.
Coon, Joshua J.
description Current healthcare practices are reactive and based on limited physiological information collected months or years apart. By enabling patients and healthy consumers access to continuous measurements of health, wearable devices and digital medicine stand to realize highly personalized and preventative care. However, most current digital technologies provide information on a limited set of physiological traits, such as heart rate and step count, which alone offer little insight into the etiology of most diseases. Here we propose to integrate data from biohealth smartphone applications with continuous metabolic phenotypes derived from urine metabolites. This combination of molecular phenotypes with quantitative measurements of lifestyle reflect the biological consequences of human behavior in real time. We present data from an observational study involving two healthy subjects and discuss the challenges, opportunities, and implications of integrating this new layer of physiological information into digital medicine. Though our dataset is limited to two subjects, our analysis (also available through an interactive web-based visualization tool) provides an initial framework to monitor lifestyle factors, such as nutrition, drug metabolism, exercise, and sleep using urine metabolites.
doi_str_mv 10.1038/s41746-019-0185-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6848197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528862332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-958717e9e87d809873a70b8e06dbe23669cf0bee11a96ce4add4db2ee21e8ee73</originalsourceid><addsrcrecordid>eNp1UdtKw0AQXUSxpfYDfAv44kt0b9nLiyDFGxQE0edlk0ybLUm27iZC_96EFm_gwzAzzDmHmTkInRN8RTBT15ETyUWKiR5CZenuCE0p0yoVLKPHP-oJmse4wRhTzJXm4hRNGJFUcSKmSLyArdPONZBUQ9VVSeNb1_ng2nXSVcH36yrphw6SBjqb-9o3rohn6GRl6wjzQ56ht_u718Vjunx-eFrcLtMiI7JLdaYkkaBByVJhrSSzEucKsChzoEwIXaxwDkCI1aIAbsuSlzkFoAQUgGQzdLPX3fZ5A2UBbRdsbbbBNTbsjLfO_J60rjJr_2GE4oroUeDyIBD8ew-xM42LBdS1bcH30VBGMqy05nqAXvyBbnwf2uE8QzOqlKCM0QFF9qgi-BgDrL6WIdiMxpi9MWYwxozGmN3AoXtO3I5_hfCt_D_pE2IQkDU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528862332</pqid></control><display><type>article</type><title>Real-time health monitoring through urine metabolomics</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Miller, Ian J. ; Peters, Sean R. ; Overmyer, Katherine A. ; Paulson, Brett R. ; Westphall, Michael S. ; Coon, Joshua J.</creator><creatorcontrib>Miller, Ian J. ; Peters, Sean R. ; Overmyer, Katherine A. ; Paulson, Brett R. ; Westphall, Michael S. ; Coon, Joshua J.</creatorcontrib><description>Current healthcare practices are reactive and based on limited physiological information collected months or years apart. By enabling patients and healthy consumers access to continuous measurements of health, wearable devices and digital medicine stand to realize highly personalized and preventative care. However, most current digital technologies provide information on a limited set of physiological traits, such as heart rate and step count, which alone offer little insight into the etiology of most diseases. Here we propose to integrate data from biohealth smartphone applications with continuous metabolic phenotypes derived from urine metabolites. This combination of molecular phenotypes with quantitative measurements of lifestyle reflect the biological consequences of human behavior in real time. We present data from an observational study involving two healthy subjects and discuss the challenges, opportunities, and implications of integrating this new layer of physiological information into digital medicine. Though our dataset is limited to two subjects, our analysis (also available through an interactive web-based visualization tool) provides an initial framework to monitor lifestyle factors, such as nutrition, drug metabolism, exercise, and sleep using urine metabolites.</description><identifier>ISSN: 2398-6352</identifier><identifier>EISSN: 2398-6352</identifier><identifier>DOI: 10.1038/s41746-019-0185-y</identifier><identifier>PMID: 31728416</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/320 ; 639/638/11/296 ; Biomedicine ; Biotechnology ; Digital technology ; Health care ; Health informatics ; Medicine ; Medicine &amp; Public Health ; Metabolites ; Physiology ; Urine</subject><ispartof>NPJ digital medicine, 2019-11, Vol.2 (1), p.109-109, Article 109</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-958717e9e87d809873a70b8e06dbe23669cf0bee11a96ce4add4db2ee21e8ee73</citedby><cites>FETCH-LOGICAL-c517t-958717e9e87d809873a70b8e06dbe23669cf0bee11a96ce4add4db2ee21e8ee73</cites><orcidid>0000-0001-5084-9035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848197/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848197/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,41111,42180,51567,53782,53784</link.rule.ids></links><search><creatorcontrib>Miller, Ian J.</creatorcontrib><creatorcontrib>Peters, Sean R.</creatorcontrib><creatorcontrib>Overmyer, Katherine A.</creatorcontrib><creatorcontrib>Paulson, Brett R.</creatorcontrib><creatorcontrib>Westphall, Michael S.</creatorcontrib><creatorcontrib>Coon, Joshua J.</creatorcontrib><title>Real-time health monitoring through urine metabolomics</title><title>NPJ digital medicine</title><addtitle>npj Digit. Med</addtitle><description>Current healthcare practices are reactive and based on limited physiological information collected months or years apart. By enabling patients and healthy consumers access to continuous measurements of health, wearable devices and digital medicine stand to realize highly personalized and preventative care. However, most current digital technologies provide information on a limited set of physiological traits, such as heart rate and step count, which alone offer little insight into the etiology of most diseases. Here we propose to integrate data from biohealth smartphone applications with continuous metabolic phenotypes derived from urine metabolites. This combination of molecular phenotypes with quantitative measurements of lifestyle reflect the biological consequences of human behavior in real time. We present data from an observational study involving two healthy subjects and discuss the challenges, opportunities, and implications of integrating this new layer of physiological information into digital medicine. Though our dataset is limited to two subjects, our analysis (also available through an interactive web-based visualization tool) provides an initial framework to monitor lifestyle factors, such as nutrition, drug metabolism, exercise, and sleep using urine metabolites.</description><subject>631/61/320</subject><subject>639/638/11/296</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Digital technology</subject><subject>Health care</subject><subject>Health informatics</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolites</subject><subject>Physiology</subject><subject>Urine</subject><issn>2398-6352</issn><issn>2398-6352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UdtKw0AQXUSxpfYDfAv44kt0b9nLiyDFGxQE0edlk0ybLUm27iZC_96EFm_gwzAzzDmHmTkInRN8RTBT15ETyUWKiR5CZenuCE0p0yoVLKPHP-oJmse4wRhTzJXm4hRNGJFUcSKmSLyArdPONZBUQ9VVSeNb1_ng2nXSVcH36yrphw6SBjqb-9o3rohn6GRl6wjzQ56ht_u718Vjunx-eFrcLtMiI7JLdaYkkaBByVJhrSSzEucKsChzoEwIXaxwDkCI1aIAbsuSlzkFoAQUgGQzdLPX3fZ5A2UBbRdsbbbBNTbsjLfO_J60rjJr_2GE4oroUeDyIBD8ew-xM42LBdS1bcH30VBGMqy05nqAXvyBbnwf2uE8QzOqlKCM0QFF9qgi-BgDrL6WIdiMxpi9MWYwxozGmN3AoXtO3I5_hfCt_D_pE2IQkDU</recordid><startdate>20191111</startdate><enddate>20191111</enddate><creator>Miller, Ian J.</creator><creator>Peters, Sean R.</creator><creator>Overmyer, Katherine A.</creator><creator>Paulson, Brett R.</creator><creator>Westphall, Michael S.</creator><creator>Coon, Joshua J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5084-9035</orcidid></search><sort><creationdate>20191111</creationdate><title>Real-time health monitoring through urine metabolomics</title><author>Miller, Ian J. ; Peters, Sean R. ; Overmyer, Katherine A. ; Paulson, Brett R. ; Westphall, Michael S. ; Coon, Joshua J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-958717e9e87d809873a70b8e06dbe23669cf0bee11a96ce4add4db2ee21e8ee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/61/320</topic><topic>639/638/11/296</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Digital technology</topic><topic>Health care</topic><topic>Health informatics</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolites</topic><topic>Physiology</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Ian J.</creatorcontrib><creatorcontrib>Peters, Sean R.</creatorcontrib><creatorcontrib>Overmyer, Katherine A.</creatorcontrib><creatorcontrib>Paulson, Brett R.</creatorcontrib><creatorcontrib>Westphall, Michael S.</creatorcontrib><creatorcontrib>Coon, Joshua J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NPJ digital medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Ian J.</au><au>Peters, Sean R.</au><au>Overmyer, Katherine A.</au><au>Paulson, Brett R.</au><au>Westphall, Michael S.</au><au>Coon, Joshua J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time health monitoring through urine metabolomics</atitle><jtitle>NPJ digital medicine</jtitle><stitle>npj Digit. Med</stitle><date>2019-11-11</date><risdate>2019</risdate><volume>2</volume><issue>1</issue><spage>109</spage><epage>109</epage><pages>109-109</pages><artnum>109</artnum><issn>2398-6352</issn><eissn>2398-6352</eissn><abstract>Current healthcare practices are reactive and based on limited physiological information collected months or years apart. By enabling patients and healthy consumers access to continuous measurements of health, wearable devices and digital medicine stand to realize highly personalized and preventative care. However, most current digital technologies provide information on a limited set of physiological traits, such as heart rate and step count, which alone offer little insight into the etiology of most diseases. Here we propose to integrate data from biohealth smartphone applications with continuous metabolic phenotypes derived from urine metabolites. This combination of molecular phenotypes with quantitative measurements of lifestyle reflect the biological consequences of human behavior in real time. We present data from an observational study involving two healthy subjects and discuss the challenges, opportunities, and implications of integrating this new layer of physiological information into digital medicine. Though our dataset is limited to two subjects, our analysis (also available through an interactive web-based visualization tool) provides an initial framework to monitor lifestyle factors, such as nutrition, drug metabolism, exercise, and sleep using urine metabolites.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31728416</pmid><doi>10.1038/s41746-019-0185-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5084-9035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2398-6352
ispartof NPJ digital medicine, 2019-11, Vol.2 (1), p.109-109, Article 109
issn 2398-6352
2398-6352
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6848197
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 631/61/320
639/638/11/296
Biomedicine
Biotechnology
Digital technology
Health care
Health informatics
Medicine
Medicine & Public Health
Metabolites
Physiology
Urine
title Real-time health monitoring through urine metabolomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20health%20monitoring%20through%20urine%20metabolomics&rft.jtitle=NPJ%20digital%20medicine&rft.au=Miller,%20Ian%20J.&rft.date=2019-11-11&rft.volume=2&rft.issue=1&rft.spage=109&rft.epage=109&rft.pages=109-109&rft.artnum=109&rft.issn=2398-6352&rft.eissn=2398-6352&rft_id=info:doi/10.1038/s41746-019-0185-y&rft_dat=%3Cproquest_pubme%3E2528862332%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528862332&rft_id=info:pmid/31728416&rfr_iscdi=true