Asymmetric base-pair opening drives helicase unwinding dynamics

The opening of a Watson–Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-11, Vol.116 (45), p.22471-22477
Hauptverfasser: Colizzi, Francesco, Perez-Gonzalez, Cibran, Fritzen, Remi, Levy, Yaakov, White, Malcolm F., Penedo, J. Carlos, Bussi, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22477
container_issue 45
container_start_page 22471
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Colizzi, Francesco
Perez-Gonzalez, Cibran
Fritzen, Remi
Levy, Yaakov
White, Malcolm F.
Penedo, J. Carlos
Bussi, Giovanni
description The opening of a Watson–Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix.
doi_str_mv 10.1073/pnas.1901086116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6842596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26860586</jstor_id><sourcerecordid>26860586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-55ffe27a1308be3c2e1b6c7902f1c3e08a318e0fe9e3c7600c66623ad1695efd3</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EokvhzKkoEhcuaWfsxLEvVFVFW6RKXOBseZ1J61XiBDtZtP8el22XwsmH75snPz3G3iOcIjTibAo2naIGBCUR5Qu2QtBYykrDS7YC4E2pKl4dsTcpbQBA1wpesyOBkiteVyt2fpF2w0Bz9K5Y20TlZH0sxomCD3dFG_2WUnFPvXcZFkv45UP7h-yCHbxLb9mrzvaJ3j2-x-zH1Zfvlzfl7bfrr5cXt6WrKjGXdd11xBuLAtSahOOEa-kaDbxDJwiUFagIOtIZNhLASSm5sC1KXVPXimP2eZ87LeuBWkdhjrY3U_SDjTszWm_-JcHfm7txa2TuX2uZAz49BsTx50JpNoNPjvreBhqXZLiABqumAp3Vj_-pm3GJIdfLFvJGIWqerbO95eKYUqTu8BkE8zCOeRjH_B0nX3x43uHgP62RhZO9sEnzGA-cSyWhVlL8BkpVlT8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312781192</pqid></control><display><type>article</type><title>Asymmetric base-pair opening drives helicase unwinding dynamics</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Colizzi, Francesco ; Perez-Gonzalez, Cibran ; Fritzen, Remi ; Levy, Yaakov ; White, Malcolm F. ; Penedo, J. Carlos ; Bussi, Giovanni</creator><creatorcontrib>Colizzi, Francesco ; Perez-Gonzalez, Cibran ; Fritzen, Remi ; Levy, Yaakov ; White, Malcolm F. ; Penedo, J. Carlos ; Bussi, Giovanni</creatorcontrib><description>The opening of a Watson–Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1901086116</identifier><identifier>PMID: 31628254</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Asymmetry ; Bacteria - enzymology ; Bacteria - genetics ; Bacteria - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Pairing ; Base Sequence ; Bases (nucleic acids) ; Biological Sciences ; Deoxyribonucleic acid ; DNA ; DNA helicase ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; Gene expression ; Gene regulation ; Kinetics ; Physical Sciences ; Pyrimidines ; Ribonucleic acid ; RNA ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; Substrates ; Transcription ; Unwinding</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-11, Vol.116 (45), p.22471-22477</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Nov 5, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-55ffe27a1308be3c2e1b6c7902f1c3e08a318e0fe9e3c7600c66623ad1695efd3</citedby><cites>FETCH-LOGICAL-c443t-55ffe27a1308be3c2e1b6c7902f1c3e08a318e0fe9e3c7600c66623ad1695efd3</cites><orcidid>0000-0002-9929-973X ; 0000-0001-5601-1452 ; 0000-0003-3457-8364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26860586$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26860586$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31628254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Colizzi, Francesco</creatorcontrib><creatorcontrib>Perez-Gonzalez, Cibran</creatorcontrib><creatorcontrib>Fritzen, Remi</creatorcontrib><creatorcontrib>Levy, Yaakov</creatorcontrib><creatorcontrib>White, Malcolm F.</creatorcontrib><creatorcontrib>Penedo, J. Carlos</creatorcontrib><creatorcontrib>Bussi, Giovanni</creatorcontrib><title>Asymmetric base-pair opening drives helicase unwinding dynamics</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The opening of a Watson–Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix.</description><subject>Asymmetry</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Pairing</subject><subject>Base Sequence</subject><subject>Bases (nucleic acids)</subject><subject>Biological Sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA helicase</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Kinetics</subject><subject>Physical Sciences</subject><subject>Pyrimidines</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>Substrates</subject><subject>Transcription</subject><subject>Unwinding</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFv1DAQhS0EokvhzKkoEhcuaWfsxLEvVFVFW6RKXOBseZ1J61XiBDtZtP8el22XwsmH75snPz3G3iOcIjTibAo2naIGBCUR5Qu2QtBYykrDS7YC4E2pKl4dsTcpbQBA1wpesyOBkiteVyt2fpF2w0Bz9K5Y20TlZH0sxomCD3dFG_2WUnFPvXcZFkv45UP7h-yCHbxLb9mrzvaJ3j2-x-zH1Zfvlzfl7bfrr5cXt6WrKjGXdd11xBuLAtSahOOEa-kaDbxDJwiUFagIOtIZNhLASSm5sC1KXVPXimP2eZ87LeuBWkdhjrY3U_SDjTszWm_-JcHfm7txa2TuX2uZAz49BsTx50JpNoNPjvreBhqXZLiABqumAp3Vj_-pm3GJIdfLFvJGIWqerbO95eKYUqTu8BkE8zCOeRjH_B0nX3x43uHgP62RhZO9sEnzGA-cSyWhVlL8BkpVlT8</recordid><startdate>20191105</startdate><enddate>20191105</enddate><creator>Colizzi, Francesco</creator><creator>Perez-Gonzalez, Cibran</creator><creator>Fritzen, Remi</creator><creator>Levy, Yaakov</creator><creator>White, Malcolm F.</creator><creator>Penedo, J. Carlos</creator><creator>Bussi, Giovanni</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9929-973X</orcidid><orcidid>https://orcid.org/0000-0001-5601-1452</orcidid><orcidid>https://orcid.org/0000-0003-3457-8364</orcidid></search><sort><creationdate>20191105</creationdate><title>Asymmetric base-pair opening drives helicase unwinding dynamics</title><author>Colizzi, Francesco ; Perez-Gonzalez, Cibran ; Fritzen, Remi ; Levy, Yaakov ; White, Malcolm F. ; Penedo, J. Carlos ; Bussi, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-55ffe27a1308be3c2e1b6c7902f1c3e08a318e0fe9e3c7600c66623ad1695efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymmetry</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Pairing</topic><topic>Base Sequence</topic><topic>Bases (nucleic acids)</topic><topic>Biological Sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA helicase</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Kinetics</topic><topic>Physical Sciences</topic><topic>Pyrimidines</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>Substrates</topic><topic>Transcription</topic><topic>Unwinding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colizzi, Francesco</creatorcontrib><creatorcontrib>Perez-Gonzalez, Cibran</creatorcontrib><creatorcontrib>Fritzen, Remi</creatorcontrib><creatorcontrib>Levy, Yaakov</creatorcontrib><creatorcontrib>White, Malcolm F.</creatorcontrib><creatorcontrib>Penedo, J. Carlos</creatorcontrib><creatorcontrib>Bussi, Giovanni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colizzi, Francesco</au><au>Perez-Gonzalez, Cibran</au><au>Fritzen, Remi</au><au>Levy, Yaakov</au><au>White, Malcolm F.</au><au>Penedo, J. Carlos</au><au>Bussi, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric base-pair opening drives helicase unwinding dynamics</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-11-05</date><risdate>2019</risdate><volume>116</volume><issue>45</issue><spage>22471</spage><epage>22477</epage><pages>22471-22477</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The opening of a Watson–Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31628254</pmid><doi>10.1073/pnas.1901086116</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9929-973X</orcidid><orcidid>https://orcid.org/0000-0001-5601-1452</orcidid><orcidid>https://orcid.org/0000-0003-3457-8364</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-11, Vol.116 (45), p.22471-22477
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6842596
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Asymmetry
Bacteria - enzymology
Bacteria - genetics
Bacteria - metabolism
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Pairing
Base Sequence
Bases (nucleic acids)
Biological Sciences
Deoxyribonucleic acid
DNA
DNA helicase
DNA Helicases - genetics
DNA Helicases - metabolism
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
Gene expression
Gene regulation
Kinetics
Physical Sciences
Pyrimidines
Ribonucleic acid
RNA
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
Substrates
Transcription
Unwinding
title Asymmetric base-pair opening drives helicase unwinding dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20base-pair%20opening%20drives%20helicase%20unwinding%20dynamics&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Colizzi,%20Francesco&rft.date=2019-11-05&rft.volume=116&rft.issue=45&rft.spage=22471&rft.epage=22477&rft.pages=22471-22477&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1901086116&rft_dat=%3Cjstor_pubme%3E26860586%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312781192&rft_id=info:pmid/31628254&rft_jstor_id=26860586&rfr_iscdi=true