Asymmetric base-pair opening drives helicase unwinding dynamics
The opening of a Watson–Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pai...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-11, Vol.116 (45), p.22471-22477 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22477 |
---|---|
container_issue | 45 |
container_start_page | 22471 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Colizzi, Francesco Perez-Gonzalez, Cibran Fritzen, Remi Levy, Yaakov White, Malcolm F. Penedo, J. Carlos Bussi, Giovanni |
description | The opening of a Watson–Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix. |
doi_str_mv | 10.1073/pnas.1901086116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6842596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26860586</jstor_id><sourcerecordid>26860586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-55ffe27a1308be3c2e1b6c7902f1c3e08a318e0fe9e3c7600c66623ad1695efd3</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EokvhzKkoEhcuaWfsxLEvVFVFW6RKXOBseZ1J61XiBDtZtP8el22XwsmH75snPz3G3iOcIjTibAo2naIGBCUR5Qu2QtBYykrDS7YC4E2pKl4dsTcpbQBA1wpesyOBkiteVyt2fpF2w0Bz9K5Y20TlZH0sxomCD3dFG_2WUnFPvXcZFkv45UP7h-yCHbxLb9mrzvaJ3j2-x-zH1Zfvlzfl7bfrr5cXt6WrKjGXdd11xBuLAtSahOOEa-kaDbxDJwiUFagIOtIZNhLASSm5sC1KXVPXimP2eZ87LeuBWkdhjrY3U_SDjTszWm_-JcHfm7txa2TuX2uZAz49BsTx50JpNoNPjvreBhqXZLiABqumAp3Vj_-pm3GJIdfLFvJGIWqerbO95eKYUqTu8BkE8zCOeRjH_B0nX3x43uHgP62RhZO9sEnzGA-cSyWhVlL8BkpVlT8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312781192</pqid></control><display><type>article</type><title>Asymmetric base-pair opening drives helicase unwinding dynamics</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Colizzi, Francesco ; Perez-Gonzalez, Cibran ; Fritzen, Remi ; Levy, Yaakov ; White, Malcolm F. ; Penedo, J. Carlos ; Bussi, Giovanni</creator><creatorcontrib>Colizzi, Francesco ; Perez-Gonzalez, Cibran ; Fritzen, Remi ; Levy, Yaakov ; White, Malcolm F. ; Penedo, J. Carlos ; Bussi, Giovanni</creatorcontrib><description>The opening of a Watson–Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1901086116</identifier><identifier>PMID: 31628254</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Asymmetry ; Bacteria - enzymology ; Bacteria - genetics ; Bacteria - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Pairing ; Base Sequence ; Bases (nucleic acids) ; Biological Sciences ; Deoxyribonucleic acid ; DNA ; DNA helicase ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; Gene expression ; Gene regulation ; Kinetics ; Physical Sciences ; Pyrimidines ; Ribonucleic acid ; RNA ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; Substrates ; Transcription ; Unwinding</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-11, Vol.116 (45), p.22471-22477</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Nov 5, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-55ffe27a1308be3c2e1b6c7902f1c3e08a318e0fe9e3c7600c66623ad1695efd3</citedby><cites>FETCH-LOGICAL-c443t-55ffe27a1308be3c2e1b6c7902f1c3e08a318e0fe9e3c7600c66623ad1695efd3</cites><orcidid>0000-0002-9929-973X ; 0000-0001-5601-1452 ; 0000-0003-3457-8364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26860586$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26860586$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31628254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Colizzi, Francesco</creatorcontrib><creatorcontrib>Perez-Gonzalez, Cibran</creatorcontrib><creatorcontrib>Fritzen, Remi</creatorcontrib><creatorcontrib>Levy, Yaakov</creatorcontrib><creatorcontrib>White, Malcolm F.</creatorcontrib><creatorcontrib>Penedo, J. Carlos</creatorcontrib><creatorcontrib>Bussi, Giovanni</creatorcontrib><title>Asymmetric base-pair opening drives helicase unwinding dynamics</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The opening of a Watson–Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix.</description><subject>Asymmetry</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Pairing</subject><subject>Base Sequence</subject><subject>Bases (nucleic acids)</subject><subject>Biological Sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA helicase</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Kinetics</subject><subject>Physical Sciences</subject><subject>Pyrimidines</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>Substrates</subject><subject>Transcription</subject><subject>Unwinding</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFv1DAQhS0EokvhzKkoEhcuaWfsxLEvVFVFW6RKXOBseZ1J61XiBDtZtP8el22XwsmH75snPz3G3iOcIjTibAo2naIGBCUR5Qu2QtBYykrDS7YC4E2pKl4dsTcpbQBA1wpesyOBkiteVyt2fpF2w0Bz9K5Y20TlZH0sxomCD3dFG_2WUnFPvXcZFkv45UP7h-yCHbxLb9mrzvaJ3j2-x-zH1Zfvlzfl7bfrr5cXt6WrKjGXdd11xBuLAtSahOOEa-kaDbxDJwiUFagIOtIZNhLASSm5sC1KXVPXimP2eZ87LeuBWkdhjrY3U_SDjTszWm_-JcHfm7txa2TuX2uZAz49BsTx50JpNoNPjvreBhqXZLiABqumAp3Vj_-pm3GJIdfLFvJGIWqerbO95eKYUqTu8BkE8zCOeRjH_B0nX3x43uHgP62RhZO9sEnzGA-cSyWhVlL8BkpVlT8</recordid><startdate>20191105</startdate><enddate>20191105</enddate><creator>Colizzi, Francesco</creator><creator>Perez-Gonzalez, Cibran</creator><creator>Fritzen, Remi</creator><creator>Levy, Yaakov</creator><creator>White, Malcolm F.</creator><creator>Penedo, J. Carlos</creator><creator>Bussi, Giovanni</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9929-973X</orcidid><orcidid>https://orcid.org/0000-0001-5601-1452</orcidid><orcidid>https://orcid.org/0000-0003-3457-8364</orcidid></search><sort><creationdate>20191105</creationdate><title>Asymmetric base-pair opening drives helicase unwinding dynamics</title><author>Colizzi, Francesco ; Perez-Gonzalez, Cibran ; Fritzen, Remi ; Levy, Yaakov ; White, Malcolm F. ; Penedo, J. Carlos ; Bussi, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-55ffe27a1308be3c2e1b6c7902f1c3e08a318e0fe9e3c7600c66623ad1695efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymmetry</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Pairing</topic><topic>Base Sequence</topic><topic>Bases (nucleic acids)</topic><topic>Biological Sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA helicase</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Kinetics</topic><topic>Physical Sciences</topic><topic>Pyrimidines</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>Substrates</topic><topic>Transcription</topic><topic>Unwinding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colizzi, Francesco</creatorcontrib><creatorcontrib>Perez-Gonzalez, Cibran</creatorcontrib><creatorcontrib>Fritzen, Remi</creatorcontrib><creatorcontrib>Levy, Yaakov</creatorcontrib><creatorcontrib>White, Malcolm F.</creatorcontrib><creatorcontrib>Penedo, J. Carlos</creatorcontrib><creatorcontrib>Bussi, Giovanni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colizzi, Francesco</au><au>Perez-Gonzalez, Cibran</au><au>Fritzen, Remi</au><au>Levy, Yaakov</au><au>White, Malcolm F.</au><au>Penedo, J. Carlos</au><au>Bussi, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric base-pair opening drives helicase unwinding dynamics</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-11-05</date><risdate>2019</risdate><volume>116</volume><issue>45</issue><spage>22471</spage><epage>22477</epage><pages>22471-22477</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The opening of a Watson–Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31628254</pmid><doi>10.1073/pnas.1901086116</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9929-973X</orcidid><orcidid>https://orcid.org/0000-0001-5601-1452</orcidid><orcidid>https://orcid.org/0000-0003-3457-8364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-11, Vol.116 (45), p.22471-22477 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6842596 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Asymmetry Bacteria - enzymology Bacteria - genetics Bacteria - metabolism Bacterial Proteins - genetics Bacterial Proteins - metabolism Base Pairing Base Sequence Bases (nucleic acids) Biological Sciences Deoxyribonucleic acid DNA DNA helicase DNA Helicases - genetics DNA Helicases - metabolism DNA, Bacterial - chemistry DNA, Bacterial - genetics Gene expression Gene regulation Kinetics Physical Sciences Pyrimidines Ribonucleic acid RNA RNA, Bacterial - genetics RNA, Bacterial - metabolism Substrates Transcription Unwinding |
title | Asymmetric base-pair opening drives helicase unwinding dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20base-pair%20opening%20drives%20helicase%20unwinding%20dynamics&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Colizzi,%20Francesco&rft.date=2019-11-05&rft.volume=116&rft.issue=45&rft.spage=22471&rft.epage=22477&rft.pages=22471-22477&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1901086116&rft_dat=%3Cjstor_pubme%3E26860586%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312781192&rft_id=info:pmid/31628254&rft_jstor_id=26860586&rfr_iscdi=true |