Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds

Virtuosic motor performance requires the ability to evaluate and modify individual gestures within a complex motor sequence. Where and how the evaluative and premotor circuits operate within the brain to enable such temporally precise learning is poorly understood. Songbirds can learn to modify indi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2019-11, Vol.104 (3), p.559-575.e6
Hauptverfasser: Kearney, Matthew Gene, Warren, Timothy L., Hisey, Erin, Qi, Jiaxuan, Mooney, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 575.e6
container_issue 3
container_start_page 559
container_title Neuron (Cambridge, Mass.)
container_volume 104
creator Kearney, Matthew Gene
Warren, Timothy L.
Hisey, Erin
Qi, Jiaxuan
Mooney, Richard
description Virtuosic motor performance requires the ability to evaluate and modify individual gestures within a complex motor sequence. Where and how the evaluative and premotor circuits operate within the brain to enable such temporally precise learning is poorly understood. Songbirds can learn to modify individual syllables within their complex vocal sequences, providing a system for elucidating the underlying evaluative and premotor circuits. We combined behavioral and optogenetic methods to identify 2 afferents to the ventral tegmental area (VTA) that serve evaluative roles in syllable-specific learning and to establish that downstream cortico-basal ganglia circuits serve a learning role that is only premotor. Furthermore, song performance-contingent optogenetic stimulation of either VTA afferent was sufficient to drive syllable-specific learning, and these learning effects were of opposite valence. Finally, functional, anatomical, and molecular studies support the idea that these evaluative afferents bidirectionally modulate VTA dopamine neurons to enable temporally precise vocal learning. •Two inputs onto songbird midbrain dopamine neurons evaluate song performance•Activating these evaluative inputs drives song learning effects of opposite valence•Physiology and anatomy reveal midbrain circuitry mediating these opposing effects•Downstream cortical neurons serve a premotor role to enable song learning Kearney et al. used behavioral and optogenetic methods in singing birds to distinguish neural pathways that evaluate song performance from downstream premotor circuits that are guided by these evaluations to learn new vocal behaviors.
doi_str_mv 10.1016/j.neuron.2019.07.025
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6842112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627319306518</els_id><sourcerecordid>2280550885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-4e1bc618e80f2c5fe72c9e86d83aeee8dfd97ea4beb167312ad1d8942dfd14403</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhGyAUiQuXBI_jxPYFCW2XP9JKVCpwtRx7sniVtYudrNRvj6sthXLg5MO8eX5vfoS8BNoAhf7tvgm4pBgaRkE1VDSUdY_ICqgSNQelHpMVlaqveybaM_Is5z2lwDsFT8lZC5wL6NWKbC98tglnrDZHMy1m9kesTHDVZcJDnGOq1j7Zxc-52gQzTFh9j9ZM1RZNCj7sKh-qqxh2g08uPydPRjNlfHH3npNvHzZf15_q7ZePn9fvt7XtOjHXHGGwPUiUdGS2G1Ewq1D2TrYGEaUbnRJo-IAD9KIFZhw4qTgrgxKctufk3cn3ehkO6CyGOZlJXyd_MOlGR-P1w0nwP_QuHnUvOQNgxeDNnUGKPxfMsz6UM-A0mYBxyZoxSbuOStkV6et_pPu4pFDqaVaicdW2rSwqflLZFHNOON6HAapvcem9PuHSt7g0FbrgKmuv_i5yv_Sbz5-mWM559Jh0th6DRecT2lm76P__wy8RmqnG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312493338</pqid></control><display><type>article</type><title>Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kearney, Matthew Gene ; Warren, Timothy L. ; Hisey, Erin ; Qi, Jiaxuan ; Mooney, Richard</creator><creatorcontrib>Kearney, Matthew Gene ; Warren, Timothy L. ; Hisey, Erin ; Qi, Jiaxuan ; Mooney, Richard</creatorcontrib><description>Virtuosic motor performance requires the ability to evaluate and modify individual gestures within a complex motor sequence. Where and how the evaluative and premotor circuits operate within the brain to enable such temporally precise learning is poorly understood. Songbirds can learn to modify individual syllables within their complex vocal sequences, providing a system for elucidating the underlying evaluative and premotor circuits. We combined behavioral and optogenetic methods to identify 2 afferents to the ventral tegmental area (VTA) that serve evaluative roles in syllable-specific learning and to establish that downstream cortico-basal ganglia circuits serve a learning role that is only premotor. Furthermore, song performance-contingent optogenetic stimulation of either VTA afferent was sufficient to drive syllable-specific learning, and these learning effects were of opposite valence. Finally, functional, anatomical, and molecular studies support the idea that these evaluative afferents bidirectionally modulate VTA dopamine neurons to enable temporally precise vocal learning. •Two inputs onto songbird midbrain dopamine neurons evaluate song performance•Activating these evaluative inputs drives song learning effects of opposite valence•Physiology and anatomy reveal midbrain circuitry mediating these opposing effects•Downstream cortical neurons serve a premotor role to enable song learning Kearney et al. used behavioral and optogenetic methods in singing birds to distinguish neural pathways that evaluate song performance from downstream premotor circuits that are guided by these evaluations to learn new vocal behaviors.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2019.07.025</identifier><identifier>PMID: 31447169</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>actor-critic ; Animals ; Basal ganglia ; Basal Ganglia - physiology ; Birds ; birdsong ; Brain research ; Cerebral Cortex - physiology ; Circuits ; Dopamine ; Dopaminergic Neurons - physiology ; Feedback ; Finches ; Learning ; Learning - physiology ; Male ; Mammals ; Mesencephalon - physiology ; Motor task performance ; Neural Pathways ; Neurons ; Noise ; Optogenetics ; Performance evaluation ; reinforcement learning ; Scholarships &amp; fellowships ; Sensory neurons ; skill learning ; Software ; ventral tegmental area ; Ventral Tegmental Area - physiology ; Ventral tegmentum ; vocal learning ; Vocalization behavior ; Vocalization, Animal - physiology ; zebra finch</subject><ispartof>Neuron (Cambridge, Mass.), 2019-11, Vol.104 (3), p.559-575.e6</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-4e1bc618e80f2c5fe72c9e86d83aeee8dfd97ea4beb167312ad1d8942dfd14403</citedby><cites>FETCH-LOGICAL-c557t-4e1bc618e80f2c5fe72c9e86d83aeee8dfd97ea4beb167312ad1d8942dfd14403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2019.07.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31447169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kearney, Matthew Gene</creatorcontrib><creatorcontrib>Warren, Timothy L.</creatorcontrib><creatorcontrib>Hisey, Erin</creatorcontrib><creatorcontrib>Qi, Jiaxuan</creatorcontrib><creatorcontrib>Mooney, Richard</creatorcontrib><title>Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Virtuosic motor performance requires the ability to evaluate and modify individual gestures within a complex motor sequence. Where and how the evaluative and premotor circuits operate within the brain to enable such temporally precise learning is poorly understood. Songbirds can learn to modify individual syllables within their complex vocal sequences, providing a system for elucidating the underlying evaluative and premotor circuits. We combined behavioral and optogenetic methods to identify 2 afferents to the ventral tegmental area (VTA) that serve evaluative roles in syllable-specific learning and to establish that downstream cortico-basal ganglia circuits serve a learning role that is only premotor. Furthermore, song performance-contingent optogenetic stimulation of either VTA afferent was sufficient to drive syllable-specific learning, and these learning effects were of opposite valence. Finally, functional, anatomical, and molecular studies support the idea that these evaluative afferents bidirectionally modulate VTA dopamine neurons to enable temporally precise vocal learning. •Two inputs onto songbird midbrain dopamine neurons evaluate song performance•Activating these evaluative inputs drives song learning effects of opposite valence•Physiology and anatomy reveal midbrain circuitry mediating these opposing effects•Downstream cortical neurons serve a premotor role to enable song learning Kearney et al. used behavioral and optogenetic methods in singing birds to distinguish neural pathways that evaluate song performance from downstream premotor circuits that are guided by these evaluations to learn new vocal behaviors.</description><subject>actor-critic</subject><subject>Animals</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - physiology</subject><subject>Birds</subject><subject>birdsong</subject><subject>Brain research</subject><subject>Cerebral Cortex - physiology</subject><subject>Circuits</subject><subject>Dopamine</subject><subject>Dopaminergic Neurons - physiology</subject><subject>Feedback</subject><subject>Finches</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Male</subject><subject>Mammals</subject><subject>Mesencephalon - physiology</subject><subject>Motor task performance</subject><subject>Neural Pathways</subject><subject>Neurons</subject><subject>Noise</subject><subject>Optogenetics</subject><subject>Performance evaluation</subject><subject>reinforcement learning</subject><subject>Scholarships &amp; fellowships</subject><subject>Sensory neurons</subject><subject>skill learning</subject><subject>Software</subject><subject>ventral tegmental area</subject><subject>Ventral Tegmental Area - physiology</subject><subject>Ventral tegmentum</subject><subject>vocal learning</subject><subject>Vocalization behavior</subject><subject>Vocalization, Animal - physiology</subject><subject>zebra finch</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvhGyAUiQuXBI_jxPYFCW2XP9JKVCpwtRx7sniVtYudrNRvj6sthXLg5MO8eX5vfoS8BNoAhf7tvgm4pBgaRkE1VDSUdY_ICqgSNQelHpMVlaqveybaM_Is5z2lwDsFT8lZC5wL6NWKbC98tglnrDZHMy1m9kesTHDVZcJDnGOq1j7Zxc-52gQzTFh9j9ZM1RZNCj7sKh-qqxh2g08uPydPRjNlfHH3npNvHzZf15_q7ZePn9fvt7XtOjHXHGGwPUiUdGS2G1Ewq1D2TrYGEaUbnRJo-IAD9KIFZhw4qTgrgxKctufk3cn3ehkO6CyGOZlJXyd_MOlGR-P1w0nwP_QuHnUvOQNgxeDNnUGKPxfMsz6UM-A0mYBxyZoxSbuOStkV6et_pPu4pFDqaVaicdW2rSwqflLZFHNOON6HAapvcem9PuHSt7g0FbrgKmuv_i5yv_Sbz5-mWM559Jh0th6DRecT2lm76P__wy8RmqnG</recordid><startdate>20191106</startdate><enddate>20191106</enddate><creator>Kearney, Matthew Gene</creator><creator>Warren, Timothy L.</creator><creator>Hisey, Erin</creator><creator>Qi, Jiaxuan</creator><creator>Mooney, Richard</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191106</creationdate><title>Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds</title><author>Kearney, Matthew Gene ; Warren, Timothy L. ; Hisey, Erin ; Qi, Jiaxuan ; Mooney, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-4e1bc618e80f2c5fe72c9e86d83aeee8dfd97ea4beb167312ad1d8942dfd14403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>actor-critic</topic><topic>Animals</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - physiology</topic><topic>Birds</topic><topic>birdsong</topic><topic>Brain research</topic><topic>Cerebral Cortex - physiology</topic><topic>Circuits</topic><topic>Dopamine</topic><topic>Dopaminergic Neurons - physiology</topic><topic>Feedback</topic><topic>Finches</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Male</topic><topic>Mammals</topic><topic>Mesencephalon - physiology</topic><topic>Motor task performance</topic><topic>Neural Pathways</topic><topic>Neurons</topic><topic>Noise</topic><topic>Optogenetics</topic><topic>Performance evaluation</topic><topic>reinforcement learning</topic><topic>Scholarships &amp; fellowships</topic><topic>Sensory neurons</topic><topic>skill learning</topic><topic>Software</topic><topic>ventral tegmental area</topic><topic>Ventral Tegmental Area - physiology</topic><topic>Ventral tegmentum</topic><topic>vocal learning</topic><topic>Vocalization behavior</topic><topic>Vocalization, Animal - physiology</topic><topic>zebra finch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kearney, Matthew Gene</creatorcontrib><creatorcontrib>Warren, Timothy L.</creatorcontrib><creatorcontrib>Hisey, Erin</creatorcontrib><creatorcontrib>Qi, Jiaxuan</creatorcontrib><creatorcontrib>Mooney, Richard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kearney, Matthew Gene</au><au>Warren, Timothy L.</au><au>Hisey, Erin</au><au>Qi, Jiaxuan</au><au>Mooney, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2019-11-06</date><risdate>2019</risdate><volume>104</volume><issue>3</issue><spage>559</spage><epage>575.e6</epage><pages>559-575.e6</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Virtuosic motor performance requires the ability to evaluate and modify individual gestures within a complex motor sequence. Where and how the evaluative and premotor circuits operate within the brain to enable such temporally precise learning is poorly understood. Songbirds can learn to modify individual syllables within their complex vocal sequences, providing a system for elucidating the underlying evaluative and premotor circuits. We combined behavioral and optogenetic methods to identify 2 afferents to the ventral tegmental area (VTA) that serve evaluative roles in syllable-specific learning and to establish that downstream cortico-basal ganglia circuits serve a learning role that is only premotor. Furthermore, song performance-contingent optogenetic stimulation of either VTA afferent was sufficient to drive syllable-specific learning, and these learning effects were of opposite valence. Finally, functional, anatomical, and molecular studies support the idea that these evaluative afferents bidirectionally modulate VTA dopamine neurons to enable temporally precise vocal learning. •Two inputs onto songbird midbrain dopamine neurons evaluate song performance•Activating these evaluative inputs drives song learning effects of opposite valence•Physiology and anatomy reveal midbrain circuitry mediating these opposing effects•Downstream cortical neurons serve a premotor role to enable song learning Kearney et al. used behavioral and optogenetic methods in singing birds to distinguish neural pathways that evaluate song performance from downstream premotor circuits that are guided by these evaluations to learn new vocal behaviors.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31447169</pmid><doi>10.1016/j.neuron.2019.07.025</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2019-11, Vol.104 (3), p.559-575.e6
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6842112
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects actor-critic
Animals
Basal ganglia
Basal Ganglia - physiology
Birds
birdsong
Brain research
Cerebral Cortex - physiology
Circuits
Dopamine
Dopaminergic Neurons - physiology
Feedback
Finches
Learning
Learning - physiology
Male
Mammals
Mesencephalon - physiology
Motor task performance
Neural Pathways
Neurons
Noise
Optogenetics
Performance evaluation
reinforcement learning
Scholarships & fellowships
Sensory neurons
skill learning
Software
ventral tegmental area
Ventral Tegmental Area - physiology
Ventral tegmentum
vocal learning
Vocalization behavior
Vocalization, Animal - physiology
zebra finch
title Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Evaluative%20and%20Premotor%20Circuits%20Enable%20Vocal%20Learning%20in%20Songbirds&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Kearney,%20Matthew%20Gene&rft.date=2019-11-06&rft.volume=104&rft.issue=3&rft.spage=559&rft.epage=575.e6&rft.pages=559-575.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2019.07.025&rft_dat=%3Cproquest_pubme%3E2280550885%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312493338&rft_id=info:pmid/31447169&rft_els_id=S0896627319306518&rfr_iscdi=true