A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila
In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increas...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2019-11, Vol.104 (3), p.544-558.e6 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558.e6 |
---|---|
container_issue | 3 |
container_start_page | 544 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 104 |
creator | Sayin, Sercan De Backer, Jean-Francois Siju, K.P. Wosniack, Marina E. Lewis, Laurence P. Frisch, Lisa-Marie Gansen, Benedikt Schlegel, Philipp Edmondson-Stait, Amelia Sharifi, Nadiya Fisher, Corey B. Calle-Schuler, Steven A. Lauritzen, J. Scott Bock, Davi D. Costa, Marta Jefferis, Gregory S.X.E. Gjorgjieva, Julijana Grunwald Kadow, Ilona C. |
description | In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increase their effort over repeated trials in the absence of reward suggesting that need dominates negative experience. We further show that odor tracking is regulated by two mushroom body output neurons (MBONs) connecting the MB to the lateral horn. These MBONs, together with dopaminergic neurons and Dop1R2 signaling, control behavioral persistence. Conversely, an octopaminergic neuron, VPM4, which directly innervates one of the MBONs, acts as a brake on odor tracking by connecting feeding and olfaction. Together, our data suggest a function for the MB in internal state-dependent expression of behavior that can be suppressed by external inputs conveying a competing behavioral drive.
[Display omitted]
•Hunger motivates persistent food odor tracking even without reward•Two synaptically connected MBONs, -γ1pedc>αβ and -α2sc, regulate odor tracking•Octopamine neurons connect feeding and counteract MBON and odor tracking•Dopaminergic neurons and Dop1R2 signaling promote persistent tracking
What drives behavioral persistence versus quitting? Sayin et al. propose that circuit modules in the fly’s learning center and dopamine drive gradually increasing food odor tracking, which can be efficiently suppressed by extrinsic, but directly innervating, feeding-related neuromodulatory neurons. |
doi_str_mv | 10.1016/j.neuron.2019.07.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6839618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627319306543</els_id><sourcerecordid>2283108757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-1582fd46138631d917d1f26bedc5853184b22ef2ac01518cb978b46c16123c7d3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EotvCN0AoEhcuST124j8XpNUWWqSKIgHiaDnOpOtV1lnspFW_PV5tKYVDTz7Me8_z5kfIG6AVUBCnmyrgHMdQMQq6orKiTD0jC6BaljVo_ZwsqNKiFEzyI3Kc0oZSqBsNL8kRh1oCML4g35bFlxxjh2Llo5v9VCxj66doJ0xFi9MtYii-Ykw-TRgcFjZ0xU8_rbtob7PLh-JiDtfxrjiLYxp3az_YV-RFb4eEr-_fE_Lj08fvq4vy8ur882p5WbqmkVMJjWJ9VwvgSnDoNMgOeiZa7FyjGg6qbhnDnllHoQHlWi1VWwsHIm_uZMdPyIdD7m5ut9mFIe89mF30WxvvzGi9-XcS_NpcjzdGKK4FqBzw_j4gjr9mTJPZ-uRwGGzAcU6GMcWBKtnILH33n3QzzjHkeoZxYLUGIVhW1QeVy8dIEfuHZYCaPTWzMQdqZk_NUGkytWx7-7jIg-kPpr9NMZ_zxmM0yfk9js5HdJPpRv_0D78BSWWqzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312491662</pqid></control><display><type>article</type><title>A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sayin, Sercan ; De Backer, Jean-Francois ; Siju, K.P. ; Wosniack, Marina E. ; Lewis, Laurence P. ; Frisch, Lisa-Marie ; Gansen, Benedikt ; Schlegel, Philipp ; Edmondson-Stait, Amelia ; Sharifi, Nadiya ; Fisher, Corey B. ; Calle-Schuler, Steven A. ; Lauritzen, J. Scott ; Bock, Davi D. ; Costa, Marta ; Jefferis, Gregory S.X.E. ; Gjorgjieva, Julijana ; Grunwald Kadow, Ilona C.</creator><creatorcontrib>Sayin, Sercan ; De Backer, Jean-Francois ; Siju, K.P. ; Wosniack, Marina E. ; Lewis, Laurence P. ; Frisch, Lisa-Marie ; Gansen, Benedikt ; Schlegel, Philipp ; Edmondson-Stait, Amelia ; Sharifi, Nadiya ; Fisher, Corey B. ; Calle-Schuler, Steven A. ; Lauritzen, J. Scott ; Bock, Davi D. ; Costa, Marta ; Jefferis, Gregory S.X.E. ; Gjorgjieva, Julijana ; Grunwald Kadow, Ilona C.</creatorcontrib><description>In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increase their effort over repeated trials in the absence of reward suggesting that need dominates negative experience. We further show that odor tracking is regulated by two mushroom body output neurons (MBONs) connecting the MB to the lateral horn. These MBONs, together with dopaminergic neurons and Dop1R2 signaling, control behavioral persistence. Conversely, an octopaminergic neuron, VPM4, which directly innervates one of the MBONs, acts as a brake on odor tracking by connecting feeding and olfaction. Together, our data suggest a function for the MB in internal state-dependent expression of behavior that can be suppressed by external inputs conveying a competing behavioral drive.
[Display omitted]
•Hunger motivates persistent food odor tracking even without reward•Two synaptically connected MBONs, -γ1pedc>αβ and -α2sc, regulate odor tracking•Octopamine neurons connect feeding and counteract MBON and odor tracking•Dopaminergic neurons and Dop1R2 signaling promote persistent tracking
What drives behavioral persistence versus quitting? Sayin et al. propose that circuit modules in the fly’s learning center and dopamine drive gradually increasing food odor tracking, which can be efficiently suppressed by extrinsic, but directly innervating, feeding-related neuromodulatory neurons.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2019.07.028</identifier><identifier>PMID: 31471123</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Appetitive Behavior - physiology ; Behavior ; Behavior, Animal ; Dopamine ; Dopamine - metabolism ; Dopamine receptors ; Dopaminergic Neurons - metabolism ; DopR2 ; Drosophila melanogaster ; Drosophila Proteins - metabolism ; Energy resources ; Experiments ; Feedback ; Fitness equipment ; Food ; foraging ; goal-directed behavior ; Hunger ; learning ; Motivation ; Mushroom Bodies - cytology ; Mushroom Bodies - metabolism ; Mushroom Bodies - physiology ; mushroom body ; Neural Pathways - physiology ; Neurons ; Neurons - metabolism ; Octopamine ; Octopamine - metabolism ; Odor ; Odorants ; Olfaction ; olfactory system ; persistence ; Receptors, Dopamine D1 - metabolism ; Reinforcement ; Reward ; Smell ; Vinegar</subject><ispartof>Neuron (Cambridge, Mass.), 2019-11, Vol.104 (3), p.544-558.e6</ispartof><rights>2019</rights><rights>Crown Copyright © 2019. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 6, 2019</rights><rights>Crown Copyright © 2019 Published by Elsevier Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-1582fd46138631d917d1f26bedc5853184b22ef2ac01518cb978b46c16123c7d3</citedby><cites>FETCH-LOGICAL-c557t-1582fd46138631d917d1f26bedc5853184b22ef2ac01518cb978b46c16123c7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627319306543$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31471123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sayin, Sercan</creatorcontrib><creatorcontrib>De Backer, Jean-Francois</creatorcontrib><creatorcontrib>Siju, K.P.</creatorcontrib><creatorcontrib>Wosniack, Marina E.</creatorcontrib><creatorcontrib>Lewis, Laurence P.</creatorcontrib><creatorcontrib>Frisch, Lisa-Marie</creatorcontrib><creatorcontrib>Gansen, Benedikt</creatorcontrib><creatorcontrib>Schlegel, Philipp</creatorcontrib><creatorcontrib>Edmondson-Stait, Amelia</creatorcontrib><creatorcontrib>Sharifi, Nadiya</creatorcontrib><creatorcontrib>Fisher, Corey B.</creatorcontrib><creatorcontrib>Calle-Schuler, Steven A.</creatorcontrib><creatorcontrib>Lauritzen, J. Scott</creatorcontrib><creatorcontrib>Bock, Davi D.</creatorcontrib><creatorcontrib>Costa, Marta</creatorcontrib><creatorcontrib>Jefferis, Gregory S.X.E.</creatorcontrib><creatorcontrib>Gjorgjieva, Julijana</creatorcontrib><creatorcontrib>Grunwald Kadow, Ilona C.</creatorcontrib><title>A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increase their effort over repeated trials in the absence of reward suggesting that need dominates negative experience. We further show that odor tracking is regulated by two mushroom body output neurons (MBONs) connecting the MB to the lateral horn. These MBONs, together with dopaminergic neurons and Dop1R2 signaling, control behavioral persistence. Conversely, an octopaminergic neuron, VPM4, which directly innervates one of the MBONs, acts as a brake on odor tracking by connecting feeding and olfaction. Together, our data suggest a function for the MB in internal state-dependent expression of behavior that can be suppressed by external inputs conveying a competing behavioral drive.
[Display omitted]
•Hunger motivates persistent food odor tracking even without reward•Two synaptically connected MBONs, -γ1pedc>αβ and -α2sc, regulate odor tracking•Octopamine neurons connect feeding and counteract MBON and odor tracking•Dopaminergic neurons and Dop1R2 signaling promote persistent tracking
What drives behavioral persistence versus quitting? Sayin et al. propose that circuit modules in the fly’s learning center and dopamine drive gradually increasing food odor tracking, which can be efficiently suppressed by extrinsic, but directly innervating, feeding-related neuromodulatory neurons.</description><subject>Animals</subject><subject>Appetitive Behavior - physiology</subject><subject>Behavior</subject><subject>Behavior, Animal</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopamine receptors</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>DopR2</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - metabolism</subject><subject>Energy resources</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Fitness equipment</subject><subject>Food</subject><subject>foraging</subject><subject>goal-directed behavior</subject><subject>Hunger</subject><subject>learning</subject><subject>Motivation</subject><subject>Mushroom Bodies - cytology</subject><subject>Mushroom Bodies - metabolism</subject><subject>Mushroom Bodies - physiology</subject><subject>mushroom body</subject><subject>Neural Pathways - physiology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Octopamine</subject><subject>Octopamine - metabolism</subject><subject>Odor</subject><subject>Odorants</subject><subject>Olfaction</subject><subject>olfactory system</subject><subject>persistence</subject><subject>Receptors, Dopamine D1 - metabolism</subject><subject>Reinforcement</subject><subject>Reward</subject><subject>Smell</subject><subject>Vinegar</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EotvCN0AoEhcuST124j8XpNUWWqSKIgHiaDnOpOtV1lnspFW_PV5tKYVDTz7Me8_z5kfIG6AVUBCnmyrgHMdQMQq6orKiTD0jC6BaljVo_ZwsqNKiFEzyI3Kc0oZSqBsNL8kRh1oCML4g35bFlxxjh2Llo5v9VCxj66doJ0xFi9MtYii-Ykw-TRgcFjZ0xU8_rbtob7PLh-JiDtfxrjiLYxp3az_YV-RFb4eEr-_fE_Lj08fvq4vy8ur882p5WbqmkVMJjWJ9VwvgSnDoNMgOeiZa7FyjGg6qbhnDnllHoQHlWi1VWwsHIm_uZMdPyIdD7m5ut9mFIe89mF30WxvvzGi9-XcS_NpcjzdGKK4FqBzw_j4gjr9mTJPZ-uRwGGzAcU6GMcWBKtnILH33n3QzzjHkeoZxYLUGIVhW1QeVy8dIEfuHZYCaPTWzMQdqZk_NUGkytWx7-7jIg-kPpr9NMZ_zxmM0yfk9js5HdJPpRv_0D78BSWWqzg</recordid><startdate>20191106</startdate><enddate>20191106</enddate><creator>Sayin, Sercan</creator><creator>De Backer, Jean-Francois</creator><creator>Siju, K.P.</creator><creator>Wosniack, Marina E.</creator><creator>Lewis, Laurence P.</creator><creator>Frisch, Lisa-Marie</creator><creator>Gansen, Benedikt</creator><creator>Schlegel, Philipp</creator><creator>Edmondson-Stait, Amelia</creator><creator>Sharifi, Nadiya</creator><creator>Fisher, Corey B.</creator><creator>Calle-Schuler, Steven A.</creator><creator>Lauritzen, J. Scott</creator><creator>Bock, Davi D.</creator><creator>Costa, Marta</creator><creator>Jefferis, Gregory S.X.E.</creator><creator>Gjorgjieva, Julijana</creator><creator>Grunwald Kadow, Ilona C.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191106</creationdate><title>A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila</title><author>Sayin, Sercan ; De Backer, Jean-Francois ; Siju, K.P. ; Wosniack, Marina E. ; Lewis, Laurence P. ; Frisch, Lisa-Marie ; Gansen, Benedikt ; Schlegel, Philipp ; Edmondson-Stait, Amelia ; Sharifi, Nadiya ; Fisher, Corey B. ; Calle-Schuler, Steven A. ; Lauritzen, J. Scott ; Bock, Davi D. ; Costa, Marta ; Jefferis, Gregory S.X.E. ; Gjorgjieva, Julijana ; Grunwald Kadow, Ilona C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-1582fd46138631d917d1f26bedc5853184b22ef2ac01518cb978b46c16123c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Appetitive Behavior - physiology</topic><topic>Behavior</topic><topic>Behavior, Animal</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopamine receptors</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>DopR2</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - metabolism</topic><topic>Energy resources</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Fitness equipment</topic><topic>Food</topic><topic>foraging</topic><topic>goal-directed behavior</topic><topic>Hunger</topic><topic>learning</topic><topic>Motivation</topic><topic>Mushroom Bodies - cytology</topic><topic>Mushroom Bodies - metabolism</topic><topic>Mushroom Bodies - physiology</topic><topic>mushroom body</topic><topic>Neural Pathways - physiology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Octopamine</topic><topic>Octopamine - metabolism</topic><topic>Odor</topic><topic>Odorants</topic><topic>Olfaction</topic><topic>olfactory system</topic><topic>persistence</topic><topic>Receptors, Dopamine D1 - metabolism</topic><topic>Reinforcement</topic><topic>Reward</topic><topic>Smell</topic><topic>Vinegar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayin, Sercan</creatorcontrib><creatorcontrib>De Backer, Jean-Francois</creatorcontrib><creatorcontrib>Siju, K.P.</creatorcontrib><creatorcontrib>Wosniack, Marina E.</creatorcontrib><creatorcontrib>Lewis, Laurence P.</creatorcontrib><creatorcontrib>Frisch, Lisa-Marie</creatorcontrib><creatorcontrib>Gansen, Benedikt</creatorcontrib><creatorcontrib>Schlegel, Philipp</creatorcontrib><creatorcontrib>Edmondson-Stait, Amelia</creatorcontrib><creatorcontrib>Sharifi, Nadiya</creatorcontrib><creatorcontrib>Fisher, Corey B.</creatorcontrib><creatorcontrib>Calle-Schuler, Steven A.</creatorcontrib><creatorcontrib>Lauritzen, J. Scott</creatorcontrib><creatorcontrib>Bock, Davi D.</creatorcontrib><creatorcontrib>Costa, Marta</creatorcontrib><creatorcontrib>Jefferis, Gregory S.X.E.</creatorcontrib><creatorcontrib>Gjorgjieva, Julijana</creatorcontrib><creatorcontrib>Grunwald Kadow, Ilona C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayin, Sercan</au><au>De Backer, Jean-Francois</au><au>Siju, K.P.</au><au>Wosniack, Marina E.</au><au>Lewis, Laurence P.</au><au>Frisch, Lisa-Marie</au><au>Gansen, Benedikt</au><au>Schlegel, Philipp</au><au>Edmondson-Stait, Amelia</au><au>Sharifi, Nadiya</au><au>Fisher, Corey B.</au><au>Calle-Schuler, Steven A.</au><au>Lauritzen, J. Scott</au><au>Bock, Davi D.</au><au>Costa, Marta</au><au>Jefferis, Gregory S.X.E.</au><au>Gjorgjieva, Julijana</au><au>Grunwald Kadow, Ilona C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2019-11-06</date><risdate>2019</risdate><volume>104</volume><issue>3</issue><spage>544</spage><epage>558.e6</epage><pages>544-558.e6</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increase their effort over repeated trials in the absence of reward suggesting that need dominates negative experience. We further show that odor tracking is regulated by two mushroom body output neurons (MBONs) connecting the MB to the lateral horn. These MBONs, together with dopaminergic neurons and Dop1R2 signaling, control behavioral persistence. Conversely, an octopaminergic neuron, VPM4, which directly innervates one of the MBONs, acts as a brake on odor tracking by connecting feeding and olfaction. Together, our data suggest a function for the MB in internal state-dependent expression of behavior that can be suppressed by external inputs conveying a competing behavioral drive.
[Display omitted]
•Hunger motivates persistent food odor tracking even without reward•Two synaptically connected MBONs, -γ1pedc>αβ and -α2sc, regulate odor tracking•Octopamine neurons connect feeding and counteract MBON and odor tracking•Dopaminergic neurons and Dop1R2 signaling promote persistent tracking
What drives behavioral persistence versus quitting? Sayin et al. propose that circuit modules in the fly’s learning center and dopamine drive gradually increasing food odor tracking, which can be efficiently suppressed by extrinsic, but directly innervating, feeding-related neuromodulatory neurons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31471123</pmid><doi>10.1016/j.neuron.2019.07.028</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2019-11, Vol.104 (3), p.544-558.e6 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6839618 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Appetitive Behavior - physiology Behavior Behavior, Animal Dopamine Dopamine - metabolism Dopamine receptors Dopaminergic Neurons - metabolism DopR2 Drosophila melanogaster Drosophila Proteins - metabolism Energy resources Experiments Feedback Fitness equipment Food foraging goal-directed behavior Hunger learning Motivation Mushroom Bodies - cytology Mushroom Bodies - metabolism Mushroom Bodies - physiology mushroom body Neural Pathways - physiology Neurons Neurons - metabolism Octopamine Octopamine - metabolism Odor Odorants Olfaction olfactory system persistence Receptors, Dopamine D1 - metabolism Reinforcement Reward Smell Vinegar |
title | A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neural%20Circuit%20Arbitrates%20between%20Persistence%20and%20Withdrawal%20in%20Hungry%20Drosophila&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Sayin,%20Sercan&rft.date=2019-11-06&rft.volume=104&rft.issue=3&rft.spage=544&rft.epage=558.e6&rft.pages=544-558.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2019.07.028&rft_dat=%3Cproquest_pubme%3E2283108757%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312491662&rft_id=info:pmid/31471123&rft_els_id=S0896627319306543&rfr_iscdi=true |