A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila

In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2019-11, Vol.104 (3), p.544-558.e6
Hauptverfasser: Sayin, Sercan, De Backer, Jean-Francois, Siju, K.P., Wosniack, Marina E., Lewis, Laurence P., Frisch, Lisa-Marie, Gansen, Benedikt, Schlegel, Philipp, Edmondson-Stait, Amelia, Sharifi, Nadiya, Fisher, Corey B., Calle-Schuler, Steven A., Lauritzen, J. Scott, Bock, Davi D., Costa, Marta, Jefferis, Gregory S.X.E., Gjorgjieva, Julijana, Grunwald Kadow, Ilona C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558.e6
container_issue 3
container_start_page 544
container_title Neuron (Cambridge, Mass.)
container_volume 104
creator Sayin, Sercan
De Backer, Jean-Francois
Siju, K.P.
Wosniack, Marina E.
Lewis, Laurence P.
Frisch, Lisa-Marie
Gansen, Benedikt
Schlegel, Philipp
Edmondson-Stait, Amelia
Sharifi, Nadiya
Fisher, Corey B.
Calle-Schuler, Steven A.
Lauritzen, J. Scott
Bock, Davi D.
Costa, Marta
Jefferis, Gregory S.X.E.
Gjorgjieva, Julijana
Grunwald Kadow, Ilona C.
description In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increase their effort over repeated trials in the absence of reward suggesting that need dominates negative experience. We further show that odor tracking is regulated by two mushroom body output neurons (MBONs) connecting the MB to the lateral horn. These MBONs, together with dopaminergic neurons and Dop1R2 signaling, control behavioral persistence. Conversely, an octopaminergic neuron, VPM4, which directly innervates one of the MBONs, acts as a brake on odor tracking by connecting feeding and olfaction. Together, our data suggest a function for the MB in internal state-dependent expression of behavior that can be suppressed by external inputs conveying a competing behavioral drive. [Display omitted] •Hunger motivates persistent food odor tracking even without reward•Two synaptically connected MBONs, -γ1pedc>αβ and -α2sc, regulate odor tracking•Octopamine neurons connect feeding and counteract MBON and odor tracking•Dopaminergic neurons and Dop1R2 signaling promote persistent tracking What drives behavioral persistence versus quitting? Sayin et al. propose that circuit modules in the fly’s learning center and dopamine drive gradually increasing food odor tracking, which can be efficiently suppressed by extrinsic, but directly innervating, feeding-related neuromodulatory neurons.
doi_str_mv 10.1016/j.neuron.2019.07.028
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6839618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627319306543</els_id><sourcerecordid>2283108757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-1582fd46138631d917d1f26bedc5853184b22ef2ac01518cb978b46c16123c7d3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EotvCN0AoEhcuST124j8XpNUWWqSKIgHiaDnOpOtV1lnspFW_PV5tKYVDTz7Me8_z5kfIG6AVUBCnmyrgHMdQMQq6orKiTD0jC6BaljVo_ZwsqNKiFEzyI3Kc0oZSqBsNL8kRh1oCML4g35bFlxxjh2Llo5v9VCxj66doJ0xFi9MtYii-Ykw-TRgcFjZ0xU8_rbtob7PLh-JiDtfxrjiLYxp3az_YV-RFb4eEr-_fE_Lj08fvq4vy8ur882p5WbqmkVMJjWJ9VwvgSnDoNMgOeiZa7FyjGg6qbhnDnllHoQHlWi1VWwsHIm_uZMdPyIdD7m5ut9mFIe89mF30WxvvzGi9-XcS_NpcjzdGKK4FqBzw_j4gjr9mTJPZ-uRwGGzAcU6GMcWBKtnILH33n3QzzjHkeoZxYLUGIVhW1QeVy8dIEfuHZYCaPTWzMQdqZk_NUGkytWx7-7jIg-kPpr9NMZ_zxmM0yfk9js5HdJPpRv_0D78BSWWqzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312491662</pqid></control><display><type>article</type><title>A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sayin, Sercan ; De Backer, Jean-Francois ; Siju, K.P. ; Wosniack, Marina E. ; Lewis, Laurence P. ; Frisch, Lisa-Marie ; Gansen, Benedikt ; Schlegel, Philipp ; Edmondson-Stait, Amelia ; Sharifi, Nadiya ; Fisher, Corey B. ; Calle-Schuler, Steven A. ; Lauritzen, J. Scott ; Bock, Davi D. ; Costa, Marta ; Jefferis, Gregory S.X.E. ; Gjorgjieva, Julijana ; Grunwald Kadow, Ilona C.</creator><creatorcontrib>Sayin, Sercan ; De Backer, Jean-Francois ; Siju, K.P. ; Wosniack, Marina E. ; Lewis, Laurence P. ; Frisch, Lisa-Marie ; Gansen, Benedikt ; Schlegel, Philipp ; Edmondson-Stait, Amelia ; Sharifi, Nadiya ; Fisher, Corey B. ; Calle-Schuler, Steven A. ; Lauritzen, J. Scott ; Bock, Davi D. ; Costa, Marta ; Jefferis, Gregory S.X.E. ; Gjorgjieva, Julijana ; Grunwald Kadow, Ilona C.</creatorcontrib><description>In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increase their effort over repeated trials in the absence of reward suggesting that need dominates negative experience. We further show that odor tracking is regulated by two mushroom body output neurons (MBONs) connecting the MB to the lateral horn. These MBONs, together with dopaminergic neurons and Dop1R2 signaling, control behavioral persistence. Conversely, an octopaminergic neuron, VPM4, which directly innervates one of the MBONs, acts as a brake on odor tracking by connecting feeding and olfaction. Together, our data suggest a function for the MB in internal state-dependent expression of behavior that can be suppressed by external inputs conveying a competing behavioral drive. [Display omitted] •Hunger motivates persistent food odor tracking even without reward•Two synaptically connected MBONs, -γ1pedc&gt;αβ and -α2sc, regulate odor tracking•Octopamine neurons connect feeding and counteract MBON and odor tracking•Dopaminergic neurons and Dop1R2 signaling promote persistent tracking What drives behavioral persistence versus quitting? Sayin et al. propose that circuit modules in the fly’s learning center and dopamine drive gradually increasing food odor tracking, which can be efficiently suppressed by extrinsic, but directly innervating, feeding-related neuromodulatory neurons.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2019.07.028</identifier><identifier>PMID: 31471123</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Appetitive Behavior - physiology ; Behavior ; Behavior, Animal ; Dopamine ; Dopamine - metabolism ; Dopamine receptors ; Dopaminergic Neurons - metabolism ; DopR2 ; Drosophila melanogaster ; Drosophila Proteins - metabolism ; Energy resources ; Experiments ; Feedback ; Fitness equipment ; Food ; foraging ; goal-directed behavior ; Hunger ; learning ; Motivation ; Mushroom Bodies - cytology ; Mushroom Bodies - metabolism ; Mushroom Bodies - physiology ; mushroom body ; Neural Pathways - physiology ; Neurons ; Neurons - metabolism ; Octopamine ; Octopamine - metabolism ; Odor ; Odorants ; Olfaction ; olfactory system ; persistence ; Receptors, Dopamine D1 - metabolism ; Reinforcement ; Reward ; Smell ; Vinegar</subject><ispartof>Neuron (Cambridge, Mass.), 2019-11, Vol.104 (3), p.544-558.e6</ispartof><rights>2019</rights><rights>Crown Copyright © 2019. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 6, 2019</rights><rights>Crown Copyright © 2019 Published by Elsevier Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-1582fd46138631d917d1f26bedc5853184b22ef2ac01518cb978b46c16123c7d3</citedby><cites>FETCH-LOGICAL-c557t-1582fd46138631d917d1f26bedc5853184b22ef2ac01518cb978b46c16123c7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627319306543$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31471123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sayin, Sercan</creatorcontrib><creatorcontrib>De Backer, Jean-Francois</creatorcontrib><creatorcontrib>Siju, K.P.</creatorcontrib><creatorcontrib>Wosniack, Marina E.</creatorcontrib><creatorcontrib>Lewis, Laurence P.</creatorcontrib><creatorcontrib>Frisch, Lisa-Marie</creatorcontrib><creatorcontrib>Gansen, Benedikt</creatorcontrib><creatorcontrib>Schlegel, Philipp</creatorcontrib><creatorcontrib>Edmondson-Stait, Amelia</creatorcontrib><creatorcontrib>Sharifi, Nadiya</creatorcontrib><creatorcontrib>Fisher, Corey B.</creatorcontrib><creatorcontrib>Calle-Schuler, Steven A.</creatorcontrib><creatorcontrib>Lauritzen, J. Scott</creatorcontrib><creatorcontrib>Bock, Davi D.</creatorcontrib><creatorcontrib>Costa, Marta</creatorcontrib><creatorcontrib>Jefferis, Gregory S.X.E.</creatorcontrib><creatorcontrib>Gjorgjieva, Julijana</creatorcontrib><creatorcontrib>Grunwald Kadow, Ilona C.</creatorcontrib><title>A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increase their effort over repeated trials in the absence of reward suggesting that need dominates negative experience. We further show that odor tracking is regulated by two mushroom body output neurons (MBONs) connecting the MB to the lateral horn. These MBONs, together with dopaminergic neurons and Dop1R2 signaling, control behavioral persistence. Conversely, an octopaminergic neuron, VPM4, which directly innervates one of the MBONs, acts as a brake on odor tracking by connecting feeding and olfaction. Together, our data suggest a function for the MB in internal state-dependent expression of behavior that can be suppressed by external inputs conveying a competing behavioral drive. [Display omitted] •Hunger motivates persistent food odor tracking even without reward•Two synaptically connected MBONs, -γ1pedc&gt;αβ and -α2sc, regulate odor tracking•Octopamine neurons connect feeding and counteract MBON and odor tracking•Dopaminergic neurons and Dop1R2 signaling promote persistent tracking What drives behavioral persistence versus quitting? Sayin et al. propose that circuit modules in the fly’s learning center and dopamine drive gradually increasing food odor tracking, which can be efficiently suppressed by extrinsic, but directly innervating, feeding-related neuromodulatory neurons.</description><subject>Animals</subject><subject>Appetitive Behavior - physiology</subject><subject>Behavior</subject><subject>Behavior, Animal</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopamine receptors</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>DopR2</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - metabolism</subject><subject>Energy resources</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Fitness equipment</subject><subject>Food</subject><subject>foraging</subject><subject>goal-directed behavior</subject><subject>Hunger</subject><subject>learning</subject><subject>Motivation</subject><subject>Mushroom Bodies - cytology</subject><subject>Mushroom Bodies - metabolism</subject><subject>Mushroom Bodies - physiology</subject><subject>mushroom body</subject><subject>Neural Pathways - physiology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Octopamine</subject><subject>Octopamine - metabolism</subject><subject>Odor</subject><subject>Odorants</subject><subject>Olfaction</subject><subject>olfactory system</subject><subject>persistence</subject><subject>Receptors, Dopamine D1 - metabolism</subject><subject>Reinforcement</subject><subject>Reward</subject><subject>Smell</subject><subject>Vinegar</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EotvCN0AoEhcuST124j8XpNUWWqSKIgHiaDnOpOtV1lnspFW_PV5tKYVDTz7Me8_z5kfIG6AVUBCnmyrgHMdQMQq6orKiTD0jC6BaljVo_ZwsqNKiFEzyI3Kc0oZSqBsNL8kRh1oCML4g35bFlxxjh2Llo5v9VCxj66doJ0xFi9MtYii-Ykw-TRgcFjZ0xU8_rbtob7PLh-JiDtfxrjiLYxp3az_YV-RFb4eEr-_fE_Lj08fvq4vy8ur882p5WbqmkVMJjWJ9VwvgSnDoNMgOeiZa7FyjGg6qbhnDnllHoQHlWi1VWwsHIm_uZMdPyIdD7m5ut9mFIe89mF30WxvvzGi9-XcS_NpcjzdGKK4FqBzw_j4gjr9mTJPZ-uRwGGzAcU6GMcWBKtnILH33n3QzzjHkeoZxYLUGIVhW1QeVy8dIEfuHZYCaPTWzMQdqZk_NUGkytWx7-7jIg-kPpr9NMZ_zxmM0yfk9js5HdJPpRv_0D78BSWWqzg</recordid><startdate>20191106</startdate><enddate>20191106</enddate><creator>Sayin, Sercan</creator><creator>De Backer, Jean-Francois</creator><creator>Siju, K.P.</creator><creator>Wosniack, Marina E.</creator><creator>Lewis, Laurence P.</creator><creator>Frisch, Lisa-Marie</creator><creator>Gansen, Benedikt</creator><creator>Schlegel, Philipp</creator><creator>Edmondson-Stait, Amelia</creator><creator>Sharifi, Nadiya</creator><creator>Fisher, Corey B.</creator><creator>Calle-Schuler, Steven A.</creator><creator>Lauritzen, J. Scott</creator><creator>Bock, Davi D.</creator><creator>Costa, Marta</creator><creator>Jefferis, Gregory S.X.E.</creator><creator>Gjorgjieva, Julijana</creator><creator>Grunwald Kadow, Ilona C.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191106</creationdate><title>A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila</title><author>Sayin, Sercan ; De Backer, Jean-Francois ; Siju, K.P. ; Wosniack, Marina E. ; Lewis, Laurence P. ; Frisch, Lisa-Marie ; Gansen, Benedikt ; Schlegel, Philipp ; Edmondson-Stait, Amelia ; Sharifi, Nadiya ; Fisher, Corey B. ; Calle-Schuler, Steven A. ; Lauritzen, J. Scott ; Bock, Davi D. ; Costa, Marta ; Jefferis, Gregory S.X.E. ; Gjorgjieva, Julijana ; Grunwald Kadow, Ilona C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-1582fd46138631d917d1f26bedc5853184b22ef2ac01518cb978b46c16123c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Appetitive Behavior - physiology</topic><topic>Behavior</topic><topic>Behavior, Animal</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopamine receptors</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>DopR2</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - metabolism</topic><topic>Energy resources</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Fitness equipment</topic><topic>Food</topic><topic>foraging</topic><topic>goal-directed behavior</topic><topic>Hunger</topic><topic>learning</topic><topic>Motivation</topic><topic>Mushroom Bodies - cytology</topic><topic>Mushroom Bodies - metabolism</topic><topic>Mushroom Bodies - physiology</topic><topic>mushroom body</topic><topic>Neural Pathways - physiology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Octopamine</topic><topic>Octopamine - metabolism</topic><topic>Odor</topic><topic>Odorants</topic><topic>Olfaction</topic><topic>olfactory system</topic><topic>persistence</topic><topic>Receptors, Dopamine D1 - metabolism</topic><topic>Reinforcement</topic><topic>Reward</topic><topic>Smell</topic><topic>Vinegar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayin, Sercan</creatorcontrib><creatorcontrib>De Backer, Jean-Francois</creatorcontrib><creatorcontrib>Siju, K.P.</creatorcontrib><creatorcontrib>Wosniack, Marina E.</creatorcontrib><creatorcontrib>Lewis, Laurence P.</creatorcontrib><creatorcontrib>Frisch, Lisa-Marie</creatorcontrib><creatorcontrib>Gansen, Benedikt</creatorcontrib><creatorcontrib>Schlegel, Philipp</creatorcontrib><creatorcontrib>Edmondson-Stait, Amelia</creatorcontrib><creatorcontrib>Sharifi, Nadiya</creatorcontrib><creatorcontrib>Fisher, Corey B.</creatorcontrib><creatorcontrib>Calle-Schuler, Steven A.</creatorcontrib><creatorcontrib>Lauritzen, J. Scott</creatorcontrib><creatorcontrib>Bock, Davi D.</creatorcontrib><creatorcontrib>Costa, Marta</creatorcontrib><creatorcontrib>Jefferis, Gregory S.X.E.</creatorcontrib><creatorcontrib>Gjorgjieva, Julijana</creatorcontrib><creatorcontrib>Grunwald Kadow, Ilona C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayin, Sercan</au><au>De Backer, Jean-Francois</au><au>Siju, K.P.</au><au>Wosniack, Marina E.</au><au>Lewis, Laurence P.</au><au>Frisch, Lisa-Marie</au><au>Gansen, Benedikt</au><au>Schlegel, Philipp</au><au>Edmondson-Stait, Amelia</au><au>Sharifi, Nadiya</au><au>Fisher, Corey B.</au><au>Calle-Schuler, Steven A.</au><au>Lauritzen, J. Scott</au><au>Bock, Davi D.</au><au>Costa, Marta</au><au>Jefferis, Gregory S.X.E.</au><au>Gjorgjieva, Julijana</au><au>Grunwald Kadow, Ilona C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2019-11-06</date><risdate>2019</risdate><volume>104</volume><issue>3</issue><spage>544</spage><epage>558.e6</epage><pages>544-558.e6</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increase their effort over repeated trials in the absence of reward suggesting that need dominates negative experience. We further show that odor tracking is regulated by two mushroom body output neurons (MBONs) connecting the MB to the lateral horn. These MBONs, together with dopaminergic neurons and Dop1R2 signaling, control behavioral persistence. Conversely, an octopaminergic neuron, VPM4, which directly innervates one of the MBONs, acts as a brake on odor tracking by connecting feeding and olfaction. Together, our data suggest a function for the MB in internal state-dependent expression of behavior that can be suppressed by external inputs conveying a competing behavioral drive. [Display omitted] •Hunger motivates persistent food odor tracking even without reward•Two synaptically connected MBONs, -γ1pedc&gt;αβ and -α2sc, regulate odor tracking•Octopamine neurons connect feeding and counteract MBON and odor tracking•Dopaminergic neurons and Dop1R2 signaling promote persistent tracking What drives behavioral persistence versus quitting? Sayin et al. propose that circuit modules in the fly’s learning center and dopamine drive gradually increasing food odor tracking, which can be efficiently suppressed by extrinsic, but directly innervating, feeding-related neuromodulatory neurons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31471123</pmid><doi>10.1016/j.neuron.2019.07.028</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2019-11, Vol.104 (3), p.544-558.e6
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6839618
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Appetitive Behavior - physiology
Behavior
Behavior, Animal
Dopamine
Dopamine - metabolism
Dopamine receptors
Dopaminergic Neurons - metabolism
DopR2
Drosophila melanogaster
Drosophila Proteins - metabolism
Energy resources
Experiments
Feedback
Fitness equipment
Food
foraging
goal-directed behavior
Hunger
learning
Motivation
Mushroom Bodies - cytology
Mushroom Bodies - metabolism
Mushroom Bodies - physiology
mushroom body
Neural Pathways - physiology
Neurons
Neurons - metabolism
Octopamine
Octopamine - metabolism
Odor
Odorants
Olfaction
olfactory system
persistence
Receptors, Dopamine D1 - metabolism
Reinforcement
Reward
Smell
Vinegar
title A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neural%20Circuit%20Arbitrates%20between%20Persistence%20and%20Withdrawal%20in%20Hungry%20Drosophila&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Sayin,%20Sercan&rft.date=2019-11-06&rft.volume=104&rft.issue=3&rft.spage=544&rft.epage=558.e6&rft.pages=544-558.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2019.07.028&rft_dat=%3Cproquest_pubme%3E2283108757%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312491662&rft_id=info:pmid/31471123&rft_els_id=S0896627319306543&rfr_iscdi=true