Moderate Protein Restriction Protects Against Focal Cerebral Ischemia in Mice by Mechanisms Involving Anti-inflammatory and Anti-oxidant Responses
Food composition influences stroke risk, but its effects on ischemic injury and neurological deficits are poorly examined. While severe reduction of protein content was found to aggravate neurological impairment and brain injury as a consequence of combined energy-protein malnutrition, moderate prot...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2019-12, Vol.56 (12), p.8477-8488 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8488 |
---|---|
container_issue | 12 |
container_start_page | 8477 |
container_title | Molecular neurobiology |
container_volume | 56 |
creator | de Carvalho, Tayana Silva Sanchez-Mendoza, Eduardo H. Nascentes, Luiza M. Schultz Moreira, Adriana R. Sardari, Maryam Dzyubenko, Egor Kleinschnitz, Christoph Hermann, Dirk M. |
description | Food composition influences stroke risk, but its effects on ischemic injury and neurological deficits are poorly examined. While severe reduction of protein content was found to aggravate neurological impairment and brain injury as a consequence of combined energy-protein malnutrition, moderate protein restriction not resulting in energy deprivation was recently suggested to protect against perinatal hypoxia-ischemia. Male C57BL6/j mice were exposed to moderate protein restriction by providing a normocaloric diet containing 8% protein (control: 20% protein) for 7, 14, or 30 days. Intraluminal middle cerebral artery occlusion was then induced. Mice were sacrificed 24 h later. Irrespective of the duration of food modification (that is, 7–30 days), protein restriction reduced neurological impairment of ischemic mice revealed by a global and focal deficit score. Prolonged protein restriction over 30 days also reduced infarct volume, brain edema, and blood-brain barrier permeability and increased the survival of NeuN+ neurons in the core of the stroke (i.e., striatum). Neuroprotection by prolonged protein restriction went along with reduced brain infiltration of CD45+ leukocytes and reduced expression of inducible NO synthase and interleukin-1β. As potential mechanisms, increased levels of the NAD-dependent deacetylase sirtuin-1 and anti-oxidant glutathione peroxidase-3 were noted in ischemic brain tissue. Irrespective of the protein restriction duration, a shift from pro-oxidant oxidative stress markers (NADPH oxidase-4) to anti-oxidant markers (superoxide dismutase-1/2, glutathione peroxidase-3 and catalase) was found in the liver. Moderate protein restriction protects against ischemia in the adult brain. Accordingly, dietary modifications may be efficacious strategies promoting stroke outcome. |
doi_str_mv | 10.1007/s12035-019-01679-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6835038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250626086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8e1185e74021feadfc2bc803419b1803489f836ef6c531a9c389871cdb4696903</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhi0EYsvCH-CALHHhEvBH4tgXpKpiodJWIARny3EmrVeJXWy32v4NfjEuWZaPAwdrrJln3vH4Reg5Ja8pIe2bRBnhTUWoKke0qhIP0II2jaoolewhWhCpeNWKWl6gJyndEMIYJe1jdMEpa9oCLtD3Teghmgz4UwwZnMefIeXobHbBzzmbE15ujfMp46tgzYhXEKGL5bJOdgeTM7j0bZwF3J3wBuzOeJemhNf-GMaj81u89NlVzg-jmSaTQzxh4_s5G25db3w-z90HnyA9RY8GMyZ4dhcv0derd19WH6rrj-_Xq-V1Zeu2zpWEsmUDbU0YHcD0g2WdlYTXVHX0HKUaJBcwCNtwapTlUsmW2r6rhRKK8Ev0dtbdH7oJegs-l530PrrJxJMOxum_K97t9DYctZC8IVwWgVd3AjF8O5Rv05NLFsbReAiHpBlriGCCSFHQl_-gN-EQfVmvULUSrGHyLMhmysaQUoTh_jGU6LPlerZcF8v1T8v1WfrFn2vct_zyuAB8BlIp-S3E37P_I_sDqZW5iQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249625288</pqid></control><display><type>article</type><title>Moderate Protein Restriction Protects Against Focal Cerebral Ischemia in Mice by Mechanisms Involving Anti-inflammatory and Anti-oxidant Responses</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>de Carvalho, Tayana Silva ; Sanchez-Mendoza, Eduardo H. ; Nascentes, Luiza M. ; Schultz Moreira, Adriana R. ; Sardari, Maryam ; Dzyubenko, Egor ; Kleinschnitz, Christoph ; Hermann, Dirk M.</creator><creatorcontrib>de Carvalho, Tayana Silva ; Sanchez-Mendoza, Eduardo H. ; Nascentes, Luiza M. ; Schultz Moreira, Adriana R. ; Sardari, Maryam ; Dzyubenko, Egor ; Kleinschnitz, Christoph ; Hermann, Dirk M.</creatorcontrib><description>Food composition influences stroke risk, but its effects on ischemic injury and neurological deficits are poorly examined. While severe reduction of protein content was found to aggravate neurological impairment and brain injury as a consequence of combined energy-protein malnutrition, moderate protein restriction not resulting in energy deprivation was recently suggested to protect against perinatal hypoxia-ischemia. Male C57BL6/j mice were exposed to moderate protein restriction by providing a normocaloric diet containing 8% protein (control: 20% protein) for 7, 14, or 30 days. Intraluminal middle cerebral artery occlusion was then induced. Mice were sacrificed 24 h later. Irrespective of the duration of food modification (that is, 7–30 days), protein restriction reduced neurological impairment of ischemic mice revealed by a global and focal deficit score. Prolonged protein restriction over 30 days also reduced infarct volume, brain edema, and blood-brain barrier permeability and increased the survival of NeuN+ neurons in the core of the stroke (i.e., striatum). Neuroprotection by prolonged protein restriction went along with reduced brain infiltration of CD45+ leukocytes and reduced expression of inducible NO synthase and interleukin-1β. As potential mechanisms, increased levels of the NAD-dependent deacetylase sirtuin-1 and anti-oxidant glutathione peroxidase-3 were noted in ischemic brain tissue. Irrespective of the protein restriction duration, a shift from pro-oxidant oxidative stress markers (NADPH oxidase-4) to anti-oxidant markers (superoxide dismutase-1/2, glutathione peroxidase-3 and catalase) was found in the liver. Moderate protein restriction protects against ischemia in the adult brain. Accordingly, dietary modifications may be efficacious strategies promoting stroke outcome.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-019-01679-6</identifier><identifier>PMID: 31257559</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Anti-Inflammatory Agents - therapeutic use ; Antioxidants - therapeutic use ; Biomedical and Life Sciences ; Biomedicine ; Blood-brain barrier ; Blood-Brain Barrier - pathology ; Brain Edema - blood ; Brain Edema - complications ; Brain Edema - pathology ; Brain injury ; Brain Ischemia - blood ; Brain Ischemia - complications ; Brain Ischemia - prevention & control ; Brain Ischemia - therapy ; Catalase ; CD45 antigen ; Cell Biology ; Cell Survival ; Cerebral blood flow ; Diet, Protein-Restricted ; Edema ; Energy requirements ; Food composition ; Glutathione peroxidase ; Health risks ; Hypoxia ; Inflammation ; Ischemia ; Leukocytes ; Leukocytes - pathology ; Lipoproteins, LDL - blood ; Male ; Malnutrition ; Membrane permeability ; Mice ; Mice, Inbred C57BL ; Microglia - pathology ; NAD ; NAD - metabolism ; NAD(P)H oxidase ; Neostriatum ; Neurobiology ; Neurological complications ; Neurological diseases ; Neurology ; Neurons - metabolism ; Neurons - pathology ; Neurosciences ; Nitric Oxide Synthase Type II - metabolism ; Nutrient content ; Oxidation ; Oxidative stress ; Permeability ; Proteins ; Stroke ; Superoxide dismutase ; Triglycerides - blood ; Up-Regulation</subject><ispartof>Molecular neurobiology, 2019-12, Vol.56 (12), p.8477-8488</ispartof><rights>The Author(s) 2019</rights><rights>Molecular Neurobiology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8e1185e74021feadfc2bc803419b1803489f836ef6c531a9c389871cdb4696903</citedby><cites>FETCH-LOGICAL-c474t-8e1185e74021feadfc2bc803419b1803489f836ef6c531a9c389871cdb4696903</cites><orcidid>0000-0003-0198-3152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-019-01679-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-019-01679-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31257559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Carvalho, Tayana Silva</creatorcontrib><creatorcontrib>Sanchez-Mendoza, Eduardo H.</creatorcontrib><creatorcontrib>Nascentes, Luiza M.</creatorcontrib><creatorcontrib>Schultz Moreira, Adriana R.</creatorcontrib><creatorcontrib>Sardari, Maryam</creatorcontrib><creatorcontrib>Dzyubenko, Egor</creatorcontrib><creatorcontrib>Kleinschnitz, Christoph</creatorcontrib><creatorcontrib>Hermann, Dirk M.</creatorcontrib><title>Moderate Protein Restriction Protects Against Focal Cerebral Ischemia in Mice by Mechanisms Involving Anti-inflammatory and Anti-oxidant Responses</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Food composition influences stroke risk, but its effects on ischemic injury and neurological deficits are poorly examined. While severe reduction of protein content was found to aggravate neurological impairment and brain injury as a consequence of combined energy-protein malnutrition, moderate protein restriction not resulting in energy deprivation was recently suggested to protect against perinatal hypoxia-ischemia. Male C57BL6/j mice were exposed to moderate protein restriction by providing a normocaloric diet containing 8% protein (control: 20% protein) for 7, 14, or 30 days. Intraluminal middle cerebral artery occlusion was then induced. Mice were sacrificed 24 h later. Irrespective of the duration of food modification (that is, 7–30 days), protein restriction reduced neurological impairment of ischemic mice revealed by a global and focal deficit score. Prolonged protein restriction over 30 days also reduced infarct volume, brain edema, and blood-brain barrier permeability and increased the survival of NeuN+ neurons in the core of the stroke (i.e., striatum). Neuroprotection by prolonged protein restriction went along with reduced brain infiltration of CD45+ leukocytes and reduced expression of inducible NO synthase and interleukin-1β. As potential mechanisms, increased levels of the NAD-dependent deacetylase sirtuin-1 and anti-oxidant glutathione peroxidase-3 were noted in ischemic brain tissue. Irrespective of the protein restriction duration, a shift from pro-oxidant oxidative stress markers (NADPH oxidase-4) to anti-oxidant markers (superoxide dismutase-1/2, glutathione peroxidase-3 and catalase) was found in the liver. Moderate protein restriction protects against ischemia in the adult brain. Accordingly, dietary modifications may be efficacious strategies promoting stroke outcome.</description><subject>Animals</subject><subject>Anti-Inflammatory Agents - therapeutic use</subject><subject>Antioxidants - therapeutic use</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - pathology</subject><subject>Brain Edema - blood</subject><subject>Brain Edema - complications</subject><subject>Brain Edema - pathology</subject><subject>Brain injury</subject><subject>Brain Ischemia - blood</subject><subject>Brain Ischemia - complications</subject><subject>Brain Ischemia - prevention & control</subject><subject>Brain Ischemia - therapy</subject><subject>Catalase</subject><subject>CD45 antigen</subject><subject>Cell Biology</subject><subject>Cell Survival</subject><subject>Cerebral blood flow</subject><subject>Diet, Protein-Restricted</subject><subject>Edema</subject><subject>Energy requirements</subject><subject>Food composition</subject><subject>Glutathione peroxidase</subject><subject>Health risks</subject><subject>Hypoxia</subject><subject>Inflammation</subject><subject>Ischemia</subject><subject>Leukocytes</subject><subject>Leukocytes - pathology</subject><subject>Lipoproteins, LDL - blood</subject><subject>Male</subject><subject>Malnutrition</subject><subject>Membrane permeability</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microglia - pathology</subject><subject>NAD</subject><subject>NAD - metabolism</subject><subject>NAD(P)H oxidase</subject><subject>Neostriatum</subject><subject>Neurobiology</subject><subject>Neurological complications</subject><subject>Neurological diseases</subject><subject>Neurology</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neurosciences</subject><subject>Nitric Oxide Synthase Type II - metabolism</subject><subject>Nutrient content</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Permeability</subject><subject>Proteins</subject><subject>Stroke</subject><subject>Superoxide dismutase</subject><subject>Triglycerides - blood</subject><subject>Up-Regulation</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU2P0zAQhi0EYsvCH-CALHHhEvBH4tgXpKpiodJWIARny3EmrVeJXWy32v4NfjEuWZaPAwdrrJln3vH4Reg5Ja8pIe2bRBnhTUWoKke0qhIP0II2jaoolewhWhCpeNWKWl6gJyndEMIYJe1jdMEpa9oCLtD3Teghmgz4UwwZnMefIeXobHbBzzmbE15ujfMp46tgzYhXEKGL5bJOdgeTM7j0bZwF3J3wBuzOeJemhNf-GMaj81u89NlVzg-jmSaTQzxh4_s5G25db3w-z90HnyA9RY8GMyZ4dhcv0derd19WH6rrj-_Xq-V1Zeu2zpWEsmUDbU0YHcD0g2WdlYTXVHX0HKUaJBcwCNtwapTlUsmW2r6rhRKK8Ev0dtbdH7oJegs-l530PrrJxJMOxum_K97t9DYctZC8IVwWgVd3AjF8O5Rv05NLFsbReAiHpBlriGCCSFHQl_-gN-EQfVmvULUSrGHyLMhmysaQUoTh_jGU6LPlerZcF8v1T8v1WfrFn2vct_zyuAB8BlIp-S3E37P_I_sDqZW5iQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>de Carvalho, Tayana Silva</creator><creator>Sanchez-Mendoza, Eduardo H.</creator><creator>Nascentes, Luiza M.</creator><creator>Schultz Moreira, Adriana R.</creator><creator>Sardari, Maryam</creator><creator>Dzyubenko, Egor</creator><creator>Kleinschnitz, Christoph</creator><creator>Hermann, Dirk M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0198-3152</orcidid></search><sort><creationdate>20191201</creationdate><title>Moderate Protein Restriction Protects Against Focal Cerebral Ischemia in Mice by Mechanisms Involving Anti-inflammatory and Anti-oxidant Responses</title><author>de Carvalho, Tayana Silva ; Sanchez-Mendoza, Eduardo H. ; Nascentes, Luiza M. ; Schultz Moreira, Adriana R. ; Sardari, Maryam ; Dzyubenko, Egor ; Kleinschnitz, Christoph ; Hermann, Dirk M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8e1185e74021feadfc2bc803419b1803489f836ef6c531a9c389871cdb4696903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Anti-Inflammatory Agents - therapeutic use</topic><topic>Antioxidants - therapeutic use</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - pathology</topic><topic>Brain Edema - blood</topic><topic>Brain Edema - complications</topic><topic>Brain Edema - pathology</topic><topic>Brain injury</topic><topic>Brain Ischemia - blood</topic><topic>Brain Ischemia - complications</topic><topic>Brain Ischemia - prevention & control</topic><topic>Brain Ischemia - therapy</topic><topic>Catalase</topic><topic>CD45 antigen</topic><topic>Cell Biology</topic><topic>Cell Survival</topic><topic>Cerebral blood flow</topic><topic>Diet, Protein-Restricted</topic><topic>Edema</topic><topic>Energy requirements</topic><topic>Food composition</topic><topic>Glutathione peroxidase</topic><topic>Health risks</topic><topic>Hypoxia</topic><topic>Inflammation</topic><topic>Ischemia</topic><topic>Leukocytes</topic><topic>Leukocytes - pathology</topic><topic>Lipoproteins, LDL - blood</topic><topic>Male</topic><topic>Malnutrition</topic><topic>Membrane permeability</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microglia - pathology</topic><topic>NAD</topic><topic>NAD - metabolism</topic><topic>NAD(P)H oxidase</topic><topic>Neostriatum</topic><topic>Neurobiology</topic><topic>Neurological complications</topic><topic>Neurological diseases</topic><topic>Neurology</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neurosciences</topic><topic>Nitric Oxide Synthase Type II - metabolism</topic><topic>Nutrient content</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Permeability</topic><topic>Proteins</topic><topic>Stroke</topic><topic>Superoxide dismutase</topic><topic>Triglycerides - blood</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Carvalho, Tayana Silva</creatorcontrib><creatorcontrib>Sanchez-Mendoza, Eduardo H.</creatorcontrib><creatorcontrib>Nascentes, Luiza M.</creatorcontrib><creatorcontrib>Schultz Moreira, Adriana R.</creatorcontrib><creatorcontrib>Sardari, Maryam</creatorcontrib><creatorcontrib>Dzyubenko, Egor</creatorcontrib><creatorcontrib>Kleinschnitz, Christoph</creatorcontrib><creatorcontrib>Hermann, Dirk M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Carvalho, Tayana Silva</au><au>Sanchez-Mendoza, Eduardo H.</au><au>Nascentes, Luiza M.</au><au>Schultz Moreira, Adriana R.</au><au>Sardari, Maryam</au><au>Dzyubenko, Egor</au><au>Kleinschnitz, Christoph</au><au>Hermann, Dirk M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moderate Protein Restriction Protects Against Focal Cerebral Ischemia in Mice by Mechanisms Involving Anti-inflammatory and Anti-oxidant Responses</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>56</volume><issue>12</issue><spage>8477</spage><epage>8488</epage><pages>8477-8488</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Food composition influences stroke risk, but its effects on ischemic injury and neurological deficits are poorly examined. While severe reduction of protein content was found to aggravate neurological impairment and brain injury as a consequence of combined energy-protein malnutrition, moderate protein restriction not resulting in energy deprivation was recently suggested to protect against perinatal hypoxia-ischemia. Male C57BL6/j mice were exposed to moderate protein restriction by providing a normocaloric diet containing 8% protein (control: 20% protein) for 7, 14, or 30 days. Intraluminal middle cerebral artery occlusion was then induced. Mice were sacrificed 24 h later. Irrespective of the duration of food modification (that is, 7–30 days), protein restriction reduced neurological impairment of ischemic mice revealed by a global and focal deficit score. Prolonged protein restriction over 30 days also reduced infarct volume, brain edema, and blood-brain barrier permeability and increased the survival of NeuN+ neurons in the core of the stroke (i.e., striatum). Neuroprotection by prolonged protein restriction went along with reduced brain infiltration of CD45+ leukocytes and reduced expression of inducible NO synthase and interleukin-1β. As potential mechanisms, increased levels of the NAD-dependent deacetylase sirtuin-1 and anti-oxidant glutathione peroxidase-3 were noted in ischemic brain tissue. Irrespective of the protein restriction duration, a shift from pro-oxidant oxidative stress markers (NADPH oxidase-4) to anti-oxidant markers (superoxide dismutase-1/2, glutathione peroxidase-3 and catalase) was found in the liver. Moderate protein restriction protects against ischemia in the adult brain. Accordingly, dietary modifications may be efficacious strategies promoting stroke outcome.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31257559</pmid><doi>10.1007/s12035-019-01679-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0198-3152</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2019-12, Vol.56 (12), p.8477-8488 |
issn | 0893-7648 1559-1182 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6835038 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals Anti-Inflammatory Agents - therapeutic use Antioxidants - therapeutic use Biomedical and Life Sciences Biomedicine Blood-brain barrier Blood-Brain Barrier - pathology Brain Edema - blood Brain Edema - complications Brain Edema - pathology Brain injury Brain Ischemia - blood Brain Ischemia - complications Brain Ischemia - prevention & control Brain Ischemia - therapy Catalase CD45 antigen Cell Biology Cell Survival Cerebral blood flow Diet, Protein-Restricted Edema Energy requirements Food composition Glutathione peroxidase Health risks Hypoxia Inflammation Ischemia Leukocytes Leukocytes - pathology Lipoproteins, LDL - blood Male Malnutrition Membrane permeability Mice Mice, Inbred C57BL Microglia - pathology NAD NAD - metabolism NAD(P)H oxidase Neostriatum Neurobiology Neurological complications Neurological diseases Neurology Neurons - metabolism Neurons - pathology Neurosciences Nitric Oxide Synthase Type II - metabolism Nutrient content Oxidation Oxidative stress Permeability Proteins Stroke Superoxide dismutase Triglycerides - blood Up-Regulation |
title | Moderate Protein Restriction Protects Against Focal Cerebral Ischemia in Mice by Mechanisms Involving Anti-inflammatory and Anti-oxidant Responses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moderate%20Protein%20Restriction%20Protects%20Against%20Focal%20Cerebral%20Ischemia%20in%20Mice%20by%20Mechanisms%20Involving%20Anti-inflammatory%20and%20Anti-oxidant%20Responses&rft.jtitle=Molecular%20neurobiology&rft.au=de%20Carvalho,%20Tayana%20Silva&rft.date=2019-12-01&rft.volume=56&rft.issue=12&rft.spage=8477&rft.epage=8488&rft.pages=8477-8488&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-019-01679-6&rft_dat=%3Cproquest_pubme%3E2250626086%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249625288&rft_id=info:pmid/31257559&rfr_iscdi=true |