In-Depth Compositional and Structural Characterization of N‑Glycans Derived from Human Urinary Exosomes

The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2019-11, Vol.91 (21), p.13528-13537
Hauptverfasser: Song, Woran, Zhou, Xiaomei, Benktander, John D, Gaunitz, Stefan, Zou, Guozhang, Wang, Ziyu, Novotny, Milos V, Jacobson, Stephen C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13537
container_issue 21
container_start_page 13528
container_title Analytical chemistry (Washington)
container_volume 91
creator Song, Woran
Zhou, Xiaomei
Benktander, John D
Gaunitz, Stefan
Zou, Guozhang
Wang, Ziyu
Novotny, Milos V
Jacobson, Stephen C
description The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal components in healthy individuals is essential. Here, we significantly extend the number of N-glycan compositions, including sulfated species, identified from urinary exosomes and determine the sialic acid linkages for many of those compositions. Capillary electrophoresis-mass spectrometry (CE-MS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify N-glycan and sulfated N-glycan compositions. Second, because the alteration of sialylation patterns has been previously implicated in various disease states, ion-exchange chromatography, microfluidic capillary electrophoresis (CE), and MALDI-MS were adopted to resolve positional isomers of sialic acids. Structures of the sialyl-linkage isomers were assigned indirectly through α2–3 sialidase treatment and sialic acid linkage-specific alkylamidation (SALSA). In total, we have identified 219 N-glycan structures that include 175 compositions, 64 sialic acid linkage isomers, 26 structural isomers, and 27 sulfated glycans.
doi_str_mv 10.1021/acs.analchem.9b02620
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6834888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2295480504</sourcerecordid><originalsourceid>FETCH-LOGICAL-a627t-fe6bc2a368ea66ec619d0ac9876212cb2a61982ee18ce24a6b4e80f081ac8b5c3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhDRCyxIVLlvEkcbwXJLQtbaWKHqBna-KdsKmSeLGTinLiFXhFngSvdrsCDuVk2fP9_8z4F-KlgrkCVG_JxTkN1Lk19_NFDagRHomZKhEybQw-FjMAyDOsAI7EsxhvAJQCpZ-Ko1yV-QJRz0R7MWQnvBnXcun7jY_t2PpkKmlYyU9jmNw4hXRdrimQGzm032lLSN_Ij79-_Dzr7hwNUZ6kyi2vZBN8L8-nngZ5HdqBwp08_eaj7zk-F08a6iK_2J_H4vrD6efleXZ5dXaxfH-ZkcZqzBrWtUPKtWHSmp1WixWQW5hKo0JXI6UXg8zKOMaCdF2wgQaMImfq0uXH4t3OdzPVPa8cD2PawG5C26dxrKfW_l0Z2rX94m-tNnlhjEkGb_YGwX-dOI62b6PjrqOB_RQt5iUWeYFK_x_FRVkYKKFI6Ot_0Bs_hfTVW0OFVWUQMVHFjnLBxxi4OcytwG5jtyl2ex-73ceeZK_-3Pkgus85AbADtvJD4wc9fwMwF78G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312778222</pqid></control><display><type>article</type><title>In-Depth Compositional and Structural Characterization of N‑Glycans Derived from Human Urinary Exosomes</title><source>ACS Publications</source><source>MEDLINE</source><creator>Song, Woran ; Zhou, Xiaomei ; Benktander, John D ; Gaunitz, Stefan ; Zou, Guozhang ; Wang, Ziyu ; Novotny, Milos V ; Jacobson, Stephen C</creator><creatorcontrib>Song, Woran ; Zhou, Xiaomei ; Benktander, John D ; Gaunitz, Stefan ; Zou, Guozhang ; Wang, Ziyu ; Novotny, Milos V ; Jacobson, Stephen C</creatorcontrib><description>The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal components in healthy individuals is essential. Here, we significantly extend the number of N-glycan compositions, including sulfated species, identified from urinary exosomes and determine the sialic acid linkages for many of those compositions. Capillary electrophoresis-mass spectrometry (CE-MS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify N-glycan and sulfated N-glycan compositions. Second, because the alteration of sialylation patterns has been previously implicated in various disease states, ion-exchange chromatography, microfluidic capillary electrophoresis (CE), and MALDI-MS were adopted to resolve positional isomers of sialic acids. Structures of the sialyl-linkage isomers were assigned indirectly through α2–3 sialidase treatment and sialic acid linkage-specific alkylamidation (SALSA). In total, we have identified 219 N-glycan structures that include 175 compositions, 64 sialic acid linkage isomers, 26 structural isomers, and 27 sulfated glycans.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b02620</identifier><identifier>PMID: 31539226</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Capillary electrophoresis ; Carbohydrate Conformation ; Chemistry ; Chromatography ; Chromatography, Liquid - methods ; Composition ; desorption ; Electrophoresis ; Electrophoresis, Capillary - methods ; Exosomes ; Exosomes - chemistry ; Glycan ; Humans ; Ion exchange ; Ion-exchange chromatography ; Ionization ; Ions ; Isomers ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; matrix-assisted laser desorption-ionization mass spectrometry ; Microfluidics ; N-glycans ; Polysaccharides ; Polysaccharides - chemistry ; positional isomers ; Scientific imaging ; sialic acid ; Sialic acids ; sialidase ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods ; Spectroscopy ; Structural analysis ; tandem mass spectrometry ; Tandem Mass Spectrometry - methods ; Urine ; Urine - chemistry</subject><ispartof>Analytical chemistry (Washington), 2019-11, Vol.91 (21), p.13528-13537</ispartof><rights>Copyright American Chemical Society Nov 5, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a627t-fe6bc2a368ea66ec619d0ac9876212cb2a61982ee18ce24a6b4e80f081ac8b5c3</citedby><cites>FETCH-LOGICAL-a627t-fe6bc2a368ea66ec619d0ac9876212cb2a61982ee18ce24a6b4e80f081ac8b5c3</cites><orcidid>0000-0003-2415-041X ; 0000-0001-5530-7059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b02620$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b02620$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31539226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Woran</creatorcontrib><creatorcontrib>Zhou, Xiaomei</creatorcontrib><creatorcontrib>Benktander, John D</creatorcontrib><creatorcontrib>Gaunitz, Stefan</creatorcontrib><creatorcontrib>Zou, Guozhang</creatorcontrib><creatorcontrib>Wang, Ziyu</creatorcontrib><creatorcontrib>Novotny, Milos V</creatorcontrib><creatorcontrib>Jacobson, Stephen C</creatorcontrib><title>In-Depth Compositional and Structural Characterization of N‑Glycans Derived from Human Urinary Exosomes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal components in healthy individuals is essential. Here, we significantly extend the number of N-glycan compositions, including sulfated species, identified from urinary exosomes and determine the sialic acid linkages for many of those compositions. Capillary electrophoresis-mass spectrometry (CE-MS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify N-glycan and sulfated N-glycan compositions. Second, because the alteration of sialylation patterns has been previously implicated in various disease states, ion-exchange chromatography, microfluidic capillary electrophoresis (CE), and MALDI-MS were adopted to resolve positional isomers of sialic acids. Structures of the sialyl-linkage isomers were assigned indirectly through α2–3 sialidase treatment and sialic acid linkage-specific alkylamidation (SALSA). In total, we have identified 219 N-glycan structures that include 175 compositions, 64 sialic acid linkage isomers, 26 structural isomers, and 27 sulfated glycans.</description><subject>Capillary electrophoresis</subject><subject>Carbohydrate Conformation</subject><subject>Chemistry</subject><subject>Chromatography</subject><subject>Chromatography, Liquid - methods</subject><subject>Composition</subject><subject>desorption</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Capillary - methods</subject><subject>Exosomes</subject><subject>Exosomes - chemistry</subject><subject>Glycan</subject><subject>Humans</subject><subject>Ion exchange</subject><subject>Ion-exchange chromatography</subject><subject>Ionization</subject><subject>Ions</subject><subject>Isomers</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>matrix-assisted laser desorption-ionization mass spectrometry</subject><subject>Microfluidics</subject><subject>N-glycans</subject><subject>Polysaccharides</subject><subject>Polysaccharides - chemistry</subject><subject>positional isomers</subject><subject>Scientific imaging</subject><subject>sialic acid</subject><subject>Sialic acids</subject><subject>sialidase</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</subject><subject>Spectroscopy</subject><subject>Structural analysis</subject><subject>tandem mass spectrometry</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Urine</subject><subject>Urine - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhi0EokvhDRCyxIVLlvEkcbwXJLQtbaWKHqBna-KdsKmSeLGTinLiFXhFngSvdrsCDuVk2fP9_8z4F-KlgrkCVG_JxTkN1Lk19_NFDagRHomZKhEybQw-FjMAyDOsAI7EsxhvAJQCpZ-Ko1yV-QJRz0R7MWQnvBnXcun7jY_t2PpkKmlYyU9jmNw4hXRdrimQGzm032lLSN_Ij79-_Dzr7hwNUZ6kyi2vZBN8L8-nngZ5HdqBwp08_eaj7zk-F08a6iK_2J_H4vrD6efleXZ5dXaxfH-ZkcZqzBrWtUPKtWHSmp1WixWQW5hKo0JXI6UXg8zKOMaCdF2wgQaMImfq0uXH4t3OdzPVPa8cD2PawG5C26dxrKfW_l0Z2rX94m-tNnlhjEkGb_YGwX-dOI62b6PjrqOB_RQt5iUWeYFK_x_FRVkYKKFI6Ot_0Bs_hfTVW0OFVWUQMVHFjnLBxxi4OcytwG5jtyl2ex-73ceeZK_-3Pkgus85AbADtvJD4wc9fwMwF78G</recordid><startdate>20191105</startdate><enddate>20191105</enddate><creator>Song, Woran</creator><creator>Zhou, Xiaomei</creator><creator>Benktander, John D</creator><creator>Gaunitz, Stefan</creator><creator>Zou, Guozhang</creator><creator>Wang, Ziyu</creator><creator>Novotny, Milos V</creator><creator>Jacobson, Stephen C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2415-041X</orcidid><orcidid>https://orcid.org/0000-0001-5530-7059</orcidid></search><sort><creationdate>20191105</creationdate><title>In-Depth Compositional and Structural Characterization of N‑Glycans Derived from Human Urinary Exosomes</title><author>Song, Woran ; Zhou, Xiaomei ; Benktander, John D ; Gaunitz, Stefan ; Zou, Guozhang ; Wang, Ziyu ; Novotny, Milos V ; Jacobson, Stephen C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a627t-fe6bc2a368ea66ec619d0ac9876212cb2a61982ee18ce24a6b4e80f081ac8b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Capillary electrophoresis</topic><topic>Carbohydrate Conformation</topic><topic>Chemistry</topic><topic>Chromatography</topic><topic>Chromatography, Liquid - methods</topic><topic>Composition</topic><topic>desorption</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Capillary - methods</topic><topic>Exosomes</topic><topic>Exosomes - chemistry</topic><topic>Glycan</topic><topic>Humans</topic><topic>Ion exchange</topic><topic>Ion-exchange chromatography</topic><topic>Ionization</topic><topic>Ions</topic><topic>Isomers</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>matrix-assisted laser desorption-ionization mass spectrometry</topic><topic>Microfluidics</topic><topic>N-glycans</topic><topic>Polysaccharides</topic><topic>Polysaccharides - chemistry</topic><topic>positional isomers</topic><topic>Scientific imaging</topic><topic>sialic acid</topic><topic>Sialic acids</topic><topic>sialidase</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</topic><topic>Spectroscopy</topic><topic>Structural analysis</topic><topic>tandem mass spectrometry</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Urine</topic><topic>Urine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Woran</creatorcontrib><creatorcontrib>Zhou, Xiaomei</creatorcontrib><creatorcontrib>Benktander, John D</creatorcontrib><creatorcontrib>Gaunitz, Stefan</creatorcontrib><creatorcontrib>Zou, Guozhang</creatorcontrib><creatorcontrib>Wang, Ziyu</creatorcontrib><creatorcontrib>Novotny, Milos V</creatorcontrib><creatorcontrib>Jacobson, Stephen C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Woran</au><au>Zhou, Xiaomei</au><au>Benktander, John D</au><au>Gaunitz, Stefan</au><au>Zou, Guozhang</au><au>Wang, Ziyu</au><au>Novotny, Milos V</au><au>Jacobson, Stephen C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Depth Compositional and Structural Characterization of N‑Glycans Derived from Human Urinary Exosomes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-11-05</date><risdate>2019</risdate><volume>91</volume><issue>21</issue><spage>13528</spage><epage>13537</epage><pages>13528-13537</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal components in healthy individuals is essential. Here, we significantly extend the number of N-glycan compositions, including sulfated species, identified from urinary exosomes and determine the sialic acid linkages for many of those compositions. Capillary electrophoresis-mass spectrometry (CE-MS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify N-glycan and sulfated N-glycan compositions. Second, because the alteration of sialylation patterns has been previously implicated in various disease states, ion-exchange chromatography, microfluidic capillary electrophoresis (CE), and MALDI-MS were adopted to resolve positional isomers of sialic acids. Structures of the sialyl-linkage isomers were assigned indirectly through α2–3 sialidase treatment and sialic acid linkage-specific alkylamidation (SALSA). In total, we have identified 219 N-glycan structures that include 175 compositions, 64 sialic acid linkage isomers, 26 structural isomers, and 27 sulfated glycans.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31539226</pmid><doi>10.1021/acs.analchem.9b02620</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2415-041X</orcidid><orcidid>https://orcid.org/0000-0001-5530-7059</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2019-11, Vol.91 (21), p.13528-13537
issn 0003-2700
1520-6882
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6834888
source ACS Publications; MEDLINE
subjects Capillary electrophoresis
Carbohydrate Conformation
Chemistry
Chromatography
Chromatography, Liquid - methods
Composition
desorption
Electrophoresis
Electrophoresis, Capillary - methods
Exosomes
Exosomes - chemistry
Glycan
Humans
Ion exchange
Ion-exchange chromatography
Ionization
Ions
Isomers
Liquid chromatography
Mass spectrometry
Mass spectroscopy
matrix-assisted laser desorption-ionization mass spectrometry
Microfluidics
N-glycans
Polysaccharides
Polysaccharides - chemistry
positional isomers
Scientific imaging
sialic acid
Sialic acids
sialidase
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods
Spectroscopy
Structural analysis
tandem mass spectrometry
Tandem Mass Spectrometry - methods
Urine
Urine - chemistry
title In-Depth Compositional and Structural Characterization of N‑Glycans Derived from Human Urinary Exosomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Depth%20Compositional%20and%20Structural%20Characterization%20of%20N%E2%80%91Glycans%20Derived%20from%20Human%20Urinary%20Exosomes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Song,%20Woran&rft.date=2019-11-05&rft.volume=91&rft.issue=21&rft.spage=13528&rft.epage=13537&rft.pages=13528-13537&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b02620&rft_dat=%3Cproquest_pubme%3E2295480504%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312778222&rft_id=info:pmid/31539226&rfr_iscdi=true