In-Depth Compositional and Structural Characterization of N‑Glycans Derived from Human Urinary Exosomes
The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal co...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2019-11, Vol.91 (21), p.13528-13537 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13537 |
---|---|
container_issue | 21 |
container_start_page | 13528 |
container_title | Analytical chemistry (Washington) |
container_volume | 91 |
creator | Song, Woran Zhou, Xiaomei Benktander, John D Gaunitz, Stefan Zou, Guozhang Wang, Ziyu Novotny, Milos V Jacobson, Stephen C |
description | The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal components in healthy individuals is essential. Here, we significantly extend the number of N-glycan compositions, including sulfated species, identified from urinary exosomes and determine the sialic acid linkages for many of those compositions. Capillary electrophoresis-mass spectrometry (CE-MS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify N-glycan and sulfated N-glycan compositions. Second, because the alteration of sialylation patterns has been previously implicated in various disease states, ion-exchange chromatography, microfluidic capillary electrophoresis (CE), and MALDI-MS were adopted to resolve positional isomers of sialic acids. Structures of the sialyl-linkage isomers were assigned indirectly through α2–3 sialidase treatment and sialic acid linkage-specific alkylamidation (SALSA). In total, we have identified 219 N-glycan structures that include 175 compositions, 64 sialic acid linkage isomers, 26 structural isomers, and 27 sulfated glycans. |
doi_str_mv | 10.1021/acs.analchem.9b02620 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6834888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2295480504</sourcerecordid><originalsourceid>FETCH-LOGICAL-a627t-fe6bc2a368ea66ec619d0ac9876212cb2a61982ee18ce24a6b4e80f081ac8b5c3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhDRCyxIVLlvEkcbwXJLQtbaWKHqBna-KdsKmSeLGTinLiFXhFngSvdrsCDuVk2fP9_8z4F-KlgrkCVG_JxTkN1Lk19_NFDagRHomZKhEybQw-FjMAyDOsAI7EsxhvAJQCpZ-Ko1yV-QJRz0R7MWQnvBnXcun7jY_t2PpkKmlYyU9jmNw4hXRdrimQGzm032lLSN_Ij79-_Dzr7hwNUZ6kyi2vZBN8L8-nngZ5HdqBwp08_eaj7zk-F08a6iK_2J_H4vrD6efleXZ5dXaxfH-ZkcZqzBrWtUPKtWHSmp1WixWQW5hKo0JXI6UXg8zKOMaCdF2wgQaMImfq0uXH4t3OdzPVPa8cD2PawG5C26dxrKfW_l0Z2rX94m-tNnlhjEkGb_YGwX-dOI62b6PjrqOB_RQt5iUWeYFK_x_FRVkYKKFI6Ot_0Bs_hfTVW0OFVWUQMVHFjnLBxxi4OcytwG5jtyl2ex-73ceeZK_-3Pkgus85AbADtvJD4wc9fwMwF78G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312778222</pqid></control><display><type>article</type><title>In-Depth Compositional and Structural Characterization of N‑Glycans Derived from Human Urinary Exosomes</title><source>ACS Publications</source><source>MEDLINE</source><creator>Song, Woran ; Zhou, Xiaomei ; Benktander, John D ; Gaunitz, Stefan ; Zou, Guozhang ; Wang, Ziyu ; Novotny, Milos V ; Jacobson, Stephen C</creator><creatorcontrib>Song, Woran ; Zhou, Xiaomei ; Benktander, John D ; Gaunitz, Stefan ; Zou, Guozhang ; Wang, Ziyu ; Novotny, Milos V ; Jacobson, Stephen C</creatorcontrib><description>The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal components in healthy individuals is essential. Here, we significantly extend the number of N-glycan compositions, including sulfated species, identified from urinary exosomes and determine the sialic acid linkages for many of those compositions. Capillary electrophoresis-mass spectrometry (CE-MS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify N-glycan and sulfated N-glycan compositions. Second, because the alteration of sialylation patterns has been previously implicated in various disease states, ion-exchange chromatography, microfluidic capillary electrophoresis (CE), and MALDI-MS were adopted to resolve positional isomers of sialic acids. Structures of the sialyl-linkage isomers were assigned indirectly through α2–3 sialidase treatment and sialic acid linkage-specific alkylamidation (SALSA). In total, we have identified 219 N-glycan structures that include 175 compositions, 64 sialic acid linkage isomers, 26 structural isomers, and 27 sulfated glycans.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b02620</identifier><identifier>PMID: 31539226</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Capillary electrophoresis ; Carbohydrate Conformation ; Chemistry ; Chromatography ; Chromatography, Liquid - methods ; Composition ; desorption ; Electrophoresis ; Electrophoresis, Capillary - methods ; Exosomes ; Exosomes - chemistry ; Glycan ; Humans ; Ion exchange ; Ion-exchange chromatography ; Ionization ; Ions ; Isomers ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; matrix-assisted laser desorption-ionization mass spectrometry ; Microfluidics ; N-glycans ; Polysaccharides ; Polysaccharides - chemistry ; positional isomers ; Scientific imaging ; sialic acid ; Sialic acids ; sialidase ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods ; Spectroscopy ; Structural analysis ; tandem mass spectrometry ; Tandem Mass Spectrometry - methods ; Urine ; Urine - chemistry</subject><ispartof>Analytical chemistry (Washington), 2019-11, Vol.91 (21), p.13528-13537</ispartof><rights>Copyright American Chemical Society Nov 5, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a627t-fe6bc2a368ea66ec619d0ac9876212cb2a61982ee18ce24a6b4e80f081ac8b5c3</citedby><cites>FETCH-LOGICAL-a627t-fe6bc2a368ea66ec619d0ac9876212cb2a61982ee18ce24a6b4e80f081ac8b5c3</cites><orcidid>0000-0003-2415-041X ; 0000-0001-5530-7059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b02620$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b02620$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31539226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Woran</creatorcontrib><creatorcontrib>Zhou, Xiaomei</creatorcontrib><creatorcontrib>Benktander, John D</creatorcontrib><creatorcontrib>Gaunitz, Stefan</creatorcontrib><creatorcontrib>Zou, Guozhang</creatorcontrib><creatorcontrib>Wang, Ziyu</creatorcontrib><creatorcontrib>Novotny, Milos V</creatorcontrib><creatorcontrib>Jacobson, Stephen C</creatorcontrib><title>In-Depth Compositional and Structural Characterization of N‑Glycans Derived from Human Urinary Exosomes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal components in healthy individuals is essential. Here, we significantly extend the number of N-glycan compositions, including sulfated species, identified from urinary exosomes and determine the sialic acid linkages for many of those compositions. Capillary electrophoresis-mass spectrometry (CE-MS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify N-glycan and sulfated N-glycan compositions. Second, because the alteration of sialylation patterns has been previously implicated in various disease states, ion-exchange chromatography, microfluidic capillary electrophoresis (CE), and MALDI-MS were adopted to resolve positional isomers of sialic acids. Structures of the sialyl-linkage isomers were assigned indirectly through α2–3 sialidase treatment and sialic acid linkage-specific alkylamidation (SALSA). In total, we have identified 219 N-glycan structures that include 175 compositions, 64 sialic acid linkage isomers, 26 structural isomers, and 27 sulfated glycans.</description><subject>Capillary electrophoresis</subject><subject>Carbohydrate Conformation</subject><subject>Chemistry</subject><subject>Chromatography</subject><subject>Chromatography, Liquid - methods</subject><subject>Composition</subject><subject>desorption</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Capillary - methods</subject><subject>Exosomes</subject><subject>Exosomes - chemistry</subject><subject>Glycan</subject><subject>Humans</subject><subject>Ion exchange</subject><subject>Ion-exchange chromatography</subject><subject>Ionization</subject><subject>Ions</subject><subject>Isomers</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>matrix-assisted laser desorption-ionization mass spectrometry</subject><subject>Microfluidics</subject><subject>N-glycans</subject><subject>Polysaccharides</subject><subject>Polysaccharides - chemistry</subject><subject>positional isomers</subject><subject>Scientific imaging</subject><subject>sialic acid</subject><subject>Sialic acids</subject><subject>sialidase</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</subject><subject>Spectroscopy</subject><subject>Structural analysis</subject><subject>tandem mass spectrometry</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Urine</subject><subject>Urine - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhi0EokvhDRCyxIVLlvEkcbwXJLQtbaWKHqBna-KdsKmSeLGTinLiFXhFngSvdrsCDuVk2fP9_8z4F-KlgrkCVG_JxTkN1Lk19_NFDagRHomZKhEybQw-FjMAyDOsAI7EsxhvAJQCpZ-Ko1yV-QJRz0R7MWQnvBnXcun7jY_t2PpkKmlYyU9jmNw4hXRdrimQGzm032lLSN_Ij79-_Dzr7hwNUZ6kyi2vZBN8L8-nngZ5HdqBwp08_eaj7zk-F08a6iK_2J_H4vrD6efleXZ5dXaxfH-ZkcZqzBrWtUPKtWHSmp1WixWQW5hKo0JXI6UXg8zKOMaCdF2wgQaMImfq0uXH4t3OdzPVPa8cD2PawG5C26dxrKfW_l0Z2rX94m-tNnlhjEkGb_YGwX-dOI62b6PjrqOB_RQt5iUWeYFK_x_FRVkYKKFI6Ot_0Bs_hfTVW0OFVWUQMVHFjnLBxxi4OcytwG5jtyl2ex-73ceeZK_-3Pkgus85AbADtvJD4wc9fwMwF78G</recordid><startdate>20191105</startdate><enddate>20191105</enddate><creator>Song, Woran</creator><creator>Zhou, Xiaomei</creator><creator>Benktander, John D</creator><creator>Gaunitz, Stefan</creator><creator>Zou, Guozhang</creator><creator>Wang, Ziyu</creator><creator>Novotny, Milos V</creator><creator>Jacobson, Stephen C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2415-041X</orcidid><orcidid>https://orcid.org/0000-0001-5530-7059</orcidid></search><sort><creationdate>20191105</creationdate><title>In-Depth Compositional and Structural Characterization of N‑Glycans Derived from Human Urinary Exosomes</title><author>Song, Woran ; Zhou, Xiaomei ; Benktander, John D ; Gaunitz, Stefan ; Zou, Guozhang ; Wang, Ziyu ; Novotny, Milos V ; Jacobson, Stephen C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a627t-fe6bc2a368ea66ec619d0ac9876212cb2a61982ee18ce24a6b4e80f081ac8b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Capillary electrophoresis</topic><topic>Carbohydrate Conformation</topic><topic>Chemistry</topic><topic>Chromatography</topic><topic>Chromatography, Liquid - methods</topic><topic>Composition</topic><topic>desorption</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Capillary - methods</topic><topic>Exosomes</topic><topic>Exosomes - chemistry</topic><topic>Glycan</topic><topic>Humans</topic><topic>Ion exchange</topic><topic>Ion-exchange chromatography</topic><topic>Ionization</topic><topic>Ions</topic><topic>Isomers</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>matrix-assisted laser desorption-ionization mass spectrometry</topic><topic>Microfluidics</topic><topic>N-glycans</topic><topic>Polysaccharides</topic><topic>Polysaccharides - chemistry</topic><topic>positional isomers</topic><topic>Scientific imaging</topic><topic>sialic acid</topic><topic>Sialic acids</topic><topic>sialidase</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</topic><topic>Spectroscopy</topic><topic>Structural analysis</topic><topic>tandem mass spectrometry</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Urine</topic><topic>Urine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Woran</creatorcontrib><creatorcontrib>Zhou, Xiaomei</creatorcontrib><creatorcontrib>Benktander, John D</creatorcontrib><creatorcontrib>Gaunitz, Stefan</creatorcontrib><creatorcontrib>Zou, Guozhang</creatorcontrib><creatorcontrib>Wang, Ziyu</creatorcontrib><creatorcontrib>Novotny, Milos V</creatorcontrib><creatorcontrib>Jacobson, Stephen C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Woran</au><au>Zhou, Xiaomei</au><au>Benktander, John D</au><au>Gaunitz, Stefan</au><au>Zou, Guozhang</au><au>Wang, Ziyu</au><au>Novotny, Milos V</au><au>Jacobson, Stephen C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Depth Compositional and Structural Characterization of N‑Glycans Derived from Human Urinary Exosomes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-11-05</date><risdate>2019</risdate><volume>91</volume><issue>21</issue><spage>13528</spage><epage>13537</epage><pages>13528-13537</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal components in healthy individuals is essential. Here, we significantly extend the number of N-glycan compositions, including sulfated species, identified from urinary exosomes and determine the sialic acid linkages for many of those compositions. Capillary electrophoresis-mass spectrometry (CE-MS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify N-glycan and sulfated N-glycan compositions. Second, because the alteration of sialylation patterns has been previously implicated in various disease states, ion-exchange chromatography, microfluidic capillary electrophoresis (CE), and MALDI-MS were adopted to resolve positional isomers of sialic acids. Structures of the sialyl-linkage isomers were assigned indirectly through α2–3 sialidase treatment and sialic acid linkage-specific alkylamidation (SALSA). In total, we have identified 219 N-glycan structures that include 175 compositions, 64 sialic acid linkage isomers, 26 structural isomers, and 27 sulfated glycans.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31539226</pmid><doi>10.1021/acs.analchem.9b02620</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2415-041X</orcidid><orcidid>https://orcid.org/0000-0001-5530-7059</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2019-11, Vol.91 (21), p.13528-13537 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6834888 |
source | ACS Publications; MEDLINE |
subjects | Capillary electrophoresis Carbohydrate Conformation Chemistry Chromatography Chromatography, Liquid - methods Composition desorption Electrophoresis Electrophoresis, Capillary - methods Exosomes Exosomes - chemistry Glycan Humans Ion exchange Ion-exchange chromatography Ionization Ions Isomers Liquid chromatography Mass spectrometry Mass spectroscopy matrix-assisted laser desorption-ionization mass spectrometry Microfluidics N-glycans Polysaccharides Polysaccharides - chemistry positional isomers Scientific imaging sialic acid Sialic acids sialidase Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods Spectroscopy Structural analysis tandem mass spectrometry Tandem Mass Spectrometry - methods Urine Urine - chemistry |
title | In-Depth Compositional and Structural Characterization of N‑Glycans Derived from Human Urinary Exosomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Depth%20Compositional%20and%20Structural%20Characterization%20of%20N%E2%80%91Glycans%20Derived%20from%20Human%20Urinary%20Exosomes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Song,%20Woran&rft.date=2019-11-05&rft.volume=91&rft.issue=21&rft.spage=13528&rft.epage=13537&rft.pages=13528-13537&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b02620&rft_dat=%3Cproquest_pubme%3E2295480504%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312778222&rft_id=info:pmid/31539226&rfr_iscdi=true |