Electrophysiological and Molecular Characterization of the Parasubiculum

The parahippocampal region is thought to be critical for memory and spatial navigation. Within this region lies the parasubiculum, a small structure that exhibits strong theta modulation, contains functionally specialized cells, and projects to layer II of the medial entorhinal cortex (MEC). Thus, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2019-11, Vol.39 (45), p.8860-8876
Hauptverfasser: Sammons, Rosanna P, Parthier, Daniel, Stumpf, Alexander, Schmitz, Dietmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8876
container_issue 45
container_start_page 8860
container_title The Journal of neuroscience
container_volume 39
creator Sammons, Rosanna P
Parthier, Daniel
Stumpf, Alexander
Schmitz, Dietmar
description The parahippocampal region is thought to be critical for memory and spatial navigation. Within this region lies the parasubiculum, a small structure that exhibits strong theta modulation, contains functionally specialized cells, and projects to layer II of the medial entorhinal cortex (MEC). Thus, it is uniquely positioned to influence firing of spatially modulated cells in the MEC and play a key role in the internal representation of the external environment. However, the basic neuronal composition of the parasubiculum remains largely unknown, and its border with the MEC is often ambiguous. We combine electrophysiology and immunohistochemistry in adult mice (both sexes) to define first, the boundaries of the parasubiculum, and second, the major cell types found in this region. We find distinct differences in the colabeling of molecular markers between the parasubiculum and the MEC, allowing us to clearly separate the two structures. Moreover, we find distinct distribution patterns of different molecular markers within the parasubiculum, across both superficial-deep and DV axes. Using unsupervised cluster analysis, we find that neurons in the parasubiculum can be broadly separated into three clusters based on their electrophysiological properties, and that each cluster corresponds to a different molecular marker. We demonstrate that, while the parasubiculum aligns structurally to some to general cortical principals, it also shows divergent features in particular in contrast to the MEC. This work will form an important basis for future studies working to disentangle the circuitry underlying memory and spatial navigation functions of the parasubiculum. We identify the major neuron types in the parasubiculum using immunohistochemistry and electrophysiology, and determine their distribution throughout the parasubiculum. We find that the neuronal composition of the parasubiculum differs considerably compared with the neighboring medial entorhinal cortex. Both regions are involved in spatial navigation. Thus, our findings are of importance for unraveling the underlying circuitry of this process and for determining the role of the parasubiculum within this network.
doi_str_mv 10.1523/JNEUROSCI.0796-19.2019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6832688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296666300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-65ac5ac5d0a94b1243af2ead148608432b02b192bc9a748da690cc8c351adc193</originalsourceid><addsrcrecordid>eNpdkVtrGzEQhUVpaJy0fyEs9KUv64wuq5VeCsU4dUIupW2exaxWjhXWK1faLSS_PjJxTBIxINA5c9DMR8gJhSmtGD-9uJ7f_r75MzufQq1lSfWUAdUfyCSrumQC6EcyAVZDKUUtDslRSvcAUAOtP5FDTiuhGOcTsph3zg4xbFYPyYcu3HmLXYF9W1yFrIwdxmK2woh2cNE_4uBDX4RlMaxc8Ss_p7Hx2TWuP5ODJXbJfdndx-T2bP53tigvb36ez35clrYCNZSyQrutFlCLhjLBcckctlQoCUpw1gBrqGaN1VgL1aLUYK2yvKLYWqr5Mfn-nLsZm7VrreuHiJ3ZRL_G-GACevNW6f3K3IX_RirOpFI54NsuIIZ_o0uDWftkXddh78KYDGNa5sMBsvXrO-t9GGOfxzMsr1ALIWueXfLZZWNIKbrl_jMUzBaW2cMyW1iGarOFlRtPXo-yb3uhw58A-5ySgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315944673</pqid></control><display><type>article</type><title>Electrophysiological and Molecular Characterization of the Parasubiculum</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Sammons, Rosanna P ; Parthier, Daniel ; Stumpf, Alexander ; Schmitz, Dietmar</creator><creatorcontrib>Sammons, Rosanna P ; Parthier, Daniel ; Stumpf, Alexander ; Schmitz, Dietmar</creatorcontrib><description>The parahippocampal region is thought to be critical for memory and spatial navigation. Within this region lies the parasubiculum, a small structure that exhibits strong theta modulation, contains functionally specialized cells, and projects to layer II of the medial entorhinal cortex (MEC). Thus, it is uniquely positioned to influence firing of spatially modulated cells in the MEC and play a key role in the internal representation of the external environment. However, the basic neuronal composition of the parasubiculum remains largely unknown, and its border with the MEC is often ambiguous. We combine electrophysiology and immunohistochemistry in adult mice (both sexes) to define first, the boundaries of the parasubiculum, and second, the major cell types found in this region. We find distinct differences in the colabeling of molecular markers between the parasubiculum and the MEC, allowing us to clearly separate the two structures. Moreover, we find distinct distribution patterns of different molecular markers within the parasubiculum, across both superficial-deep and DV axes. Using unsupervised cluster analysis, we find that neurons in the parasubiculum can be broadly separated into three clusters based on their electrophysiological properties, and that each cluster corresponds to a different molecular marker. We demonstrate that, while the parasubiculum aligns structurally to some to general cortical principals, it also shows divergent features in particular in contrast to the MEC. This work will form an important basis for future studies working to disentangle the circuitry underlying memory and spatial navigation functions of the parasubiculum. We identify the major neuron types in the parasubiculum using immunohistochemistry and electrophysiology, and determine their distribution throughout the parasubiculum. We find that the neuronal composition of the parasubiculum differs considerably compared with the neighboring medial entorhinal cortex. Both regions are involved in spatial navigation. Thus, our findings are of importance for unraveling the underlying circuitry of this process and for determining the role of the parasubiculum within this network.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0796-19.2019</identifier><identifier>PMID: 31548233</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animal behavior ; Circuits ; Cluster analysis ; Cortex (entorhinal) ; Electrophysiology ; Immunohistochemistry ; Markers ; Navigation ; Navigation behavior ; Parahippocampal gyrus ; Spatial memory</subject><ispartof>The Journal of neuroscience, 2019-11, Vol.39 (45), p.8860-8876</ispartof><rights>Copyright © 2019 the authors.</rights><rights>Copyright Society for Neuroscience Nov 6, 2019</rights><rights>Copyright © 2019 the authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-65ac5ac5d0a94b1243af2ead148608432b02b192bc9a748da690cc8c351adc193</citedby><cites>FETCH-LOGICAL-c508t-65ac5ac5d0a94b1243af2ead148608432b02b192bc9a748da690cc8c351adc193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832688/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832688/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31548233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sammons, Rosanna P</creatorcontrib><creatorcontrib>Parthier, Daniel</creatorcontrib><creatorcontrib>Stumpf, Alexander</creatorcontrib><creatorcontrib>Schmitz, Dietmar</creatorcontrib><title>Electrophysiological and Molecular Characterization of the Parasubiculum</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The parahippocampal region is thought to be critical for memory and spatial navigation. Within this region lies the parasubiculum, a small structure that exhibits strong theta modulation, contains functionally specialized cells, and projects to layer II of the medial entorhinal cortex (MEC). Thus, it is uniquely positioned to influence firing of spatially modulated cells in the MEC and play a key role in the internal representation of the external environment. However, the basic neuronal composition of the parasubiculum remains largely unknown, and its border with the MEC is often ambiguous. We combine electrophysiology and immunohistochemistry in adult mice (both sexes) to define first, the boundaries of the parasubiculum, and second, the major cell types found in this region. We find distinct differences in the colabeling of molecular markers between the parasubiculum and the MEC, allowing us to clearly separate the two structures. Moreover, we find distinct distribution patterns of different molecular markers within the parasubiculum, across both superficial-deep and DV axes. Using unsupervised cluster analysis, we find that neurons in the parasubiculum can be broadly separated into three clusters based on their electrophysiological properties, and that each cluster corresponds to a different molecular marker. We demonstrate that, while the parasubiculum aligns structurally to some to general cortical principals, it also shows divergent features in particular in contrast to the MEC. This work will form an important basis for future studies working to disentangle the circuitry underlying memory and spatial navigation functions of the parasubiculum. We identify the major neuron types in the parasubiculum using immunohistochemistry and electrophysiology, and determine their distribution throughout the parasubiculum. We find that the neuronal composition of the parasubiculum differs considerably compared with the neighboring medial entorhinal cortex. Both regions are involved in spatial navigation. Thus, our findings are of importance for unraveling the underlying circuitry of this process and for determining the role of the parasubiculum within this network.</description><subject>Animal behavior</subject><subject>Circuits</subject><subject>Cluster analysis</subject><subject>Cortex (entorhinal)</subject><subject>Electrophysiology</subject><subject>Immunohistochemistry</subject><subject>Markers</subject><subject>Navigation</subject><subject>Navigation behavior</subject><subject>Parahippocampal gyrus</subject><subject>Spatial memory</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkVtrGzEQhUVpaJy0fyEs9KUv64wuq5VeCsU4dUIupW2exaxWjhXWK1faLSS_PjJxTBIxINA5c9DMR8gJhSmtGD-9uJ7f_r75MzufQq1lSfWUAdUfyCSrumQC6EcyAVZDKUUtDslRSvcAUAOtP5FDTiuhGOcTsph3zg4xbFYPyYcu3HmLXYF9W1yFrIwdxmK2woh2cNE_4uBDX4RlMaxc8Ss_p7Hx2TWuP5ODJXbJfdndx-T2bP53tigvb36ez35clrYCNZSyQrutFlCLhjLBcckctlQoCUpw1gBrqGaN1VgL1aLUYK2yvKLYWqr5Mfn-nLsZm7VrreuHiJ3ZRL_G-GACevNW6f3K3IX_RirOpFI54NsuIIZ_o0uDWftkXddh78KYDGNa5sMBsvXrO-t9GGOfxzMsr1ALIWueXfLZZWNIKbrl_jMUzBaW2cMyW1iGarOFlRtPXo-yb3uhw58A-5ySgA</recordid><startdate>20191106</startdate><enddate>20191106</enddate><creator>Sammons, Rosanna P</creator><creator>Parthier, Daniel</creator><creator>Stumpf, Alexander</creator><creator>Schmitz, Dietmar</creator><general>Society for Neuroscience</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191106</creationdate><title>Electrophysiological and Molecular Characterization of the Parasubiculum</title><author>Sammons, Rosanna P ; Parthier, Daniel ; Stumpf, Alexander ; Schmitz, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-65ac5ac5d0a94b1243af2ead148608432b02b192bc9a748da690cc8c351adc193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal behavior</topic><topic>Circuits</topic><topic>Cluster analysis</topic><topic>Cortex (entorhinal)</topic><topic>Electrophysiology</topic><topic>Immunohistochemistry</topic><topic>Markers</topic><topic>Navigation</topic><topic>Navigation behavior</topic><topic>Parahippocampal gyrus</topic><topic>Spatial memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sammons, Rosanna P</creatorcontrib><creatorcontrib>Parthier, Daniel</creatorcontrib><creatorcontrib>Stumpf, Alexander</creatorcontrib><creatorcontrib>Schmitz, Dietmar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sammons, Rosanna P</au><au>Parthier, Daniel</au><au>Stumpf, Alexander</au><au>Schmitz, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrophysiological and Molecular Characterization of the Parasubiculum</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2019-11-06</date><risdate>2019</risdate><volume>39</volume><issue>45</issue><spage>8860</spage><epage>8876</epage><pages>8860-8876</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The parahippocampal region is thought to be critical for memory and spatial navigation. Within this region lies the parasubiculum, a small structure that exhibits strong theta modulation, contains functionally specialized cells, and projects to layer II of the medial entorhinal cortex (MEC). Thus, it is uniquely positioned to influence firing of spatially modulated cells in the MEC and play a key role in the internal representation of the external environment. However, the basic neuronal composition of the parasubiculum remains largely unknown, and its border with the MEC is often ambiguous. We combine electrophysiology and immunohistochemistry in adult mice (both sexes) to define first, the boundaries of the parasubiculum, and second, the major cell types found in this region. We find distinct differences in the colabeling of molecular markers between the parasubiculum and the MEC, allowing us to clearly separate the two structures. Moreover, we find distinct distribution patterns of different molecular markers within the parasubiculum, across both superficial-deep and DV axes. Using unsupervised cluster analysis, we find that neurons in the parasubiculum can be broadly separated into three clusters based on their electrophysiological properties, and that each cluster corresponds to a different molecular marker. We demonstrate that, while the parasubiculum aligns structurally to some to general cortical principals, it also shows divergent features in particular in contrast to the MEC. This work will form an important basis for future studies working to disentangle the circuitry underlying memory and spatial navigation functions of the parasubiculum. We identify the major neuron types in the parasubiculum using immunohistochemistry and electrophysiology, and determine their distribution throughout the parasubiculum. We find that the neuronal composition of the parasubiculum differs considerably compared with the neighboring medial entorhinal cortex. Both regions are involved in spatial navigation. Thus, our findings are of importance for unraveling the underlying circuitry of this process and for determining the role of the parasubiculum within this network.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>31548233</pmid><doi>10.1523/JNEUROSCI.0796-19.2019</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2019-11, Vol.39 (45), p.8860-8876
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6832688
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animal behavior
Circuits
Cluster analysis
Cortex (entorhinal)
Electrophysiology
Immunohistochemistry
Markers
Navigation
Navigation behavior
Parahippocampal gyrus
Spatial memory
title Electrophysiological and Molecular Characterization of the Parasubiculum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrophysiological%20and%20Molecular%20Characterization%20of%20the%20Parasubiculum&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Sammons,%20Rosanna%20P&rft.date=2019-11-06&rft.volume=39&rft.issue=45&rft.spage=8860&rft.epage=8876&rft.pages=8860-8876&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0796-19.2019&rft_dat=%3Cproquest_pubme%3E2296666300%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315944673&rft_id=info:pmid/31548233&rfr_iscdi=true