Quantification of histopathological findings using a novel image analysis platform

Digital pathology, including image analysis and automatic diagnosis of pathological tissue, has been developed remarkably. HALO is an image analysis platform specialized for the study of pathological tissues, which enables tissue segmentation by using artificial intelligence. In this study, we used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Toxicologic Pathology 2019, Vol.32(4), pp.319-327
Hauptverfasser: Horai, Yasushi, Mizukawa, Mao, Nishina, Hironobu, Nishikawa, Satomi, Ono, Yuko, Takemoto, Kana, Baba, Nobuyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue 4
container_start_page 319
container_title Journal of Toxicologic Pathology
container_volume 32
creator Horai, Yasushi
Mizukawa, Mao
Nishina, Hironobu
Nishikawa, Satomi
Ono, Yuko
Takemoto, Kana
Baba, Nobuyuki
description Digital pathology, including image analysis and automatic diagnosis of pathological tissue, has been developed remarkably. HALO is an image analysis platform specialized for the study of pathological tissues, which enables tissue segmentation by using artificial intelligence. In this study, we used HALO to quantify various histopathological changes and findings that were difficult to analyze using conventional image processing software. Using the tissue classifier module, the morphological features of degeneration/necrosis of the hepatocytes and muscle fibers, bile duct in the liver, basophilic tubules and hyaline casts in the kidney, cortex in the thymus, and red pulp, white pulp, and marginal zone in the spleen were learned and separated, and areas of interest were quantified. Furthermore, using the cytonuclear module and vacuole module in combination with the tissue classifier module, the number of erythroblasts in the red pulp of the spleen and each area of acinar cells in the parotid gland were quantified. The results of quantitative analysis were correlated with the histopathological grades evaluated by pathologists. By using artificial intelligence and other functions of HALO, we recognized morphological features, analyzed histopathological changes, and quantified the histopathological grades of various findings. The analysis of histopathological changes using HALO is expected to support pathology evaluations.
doi_str_mv 10.1293/tox.2019-0022
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6831494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314250561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c734t-4531dacf99283480b8b9c0c3b32cd2f88efd1e9786ab1bbcf62db72719907cb63</originalsourceid><addsrcrecordid>eNpdUc9vFCEUJkZjt6tH75N48TKVXzPAxcRsbGvSxGjaxBthGNhlw8IITGP_-zLdukYP8ID3ve99jw-AdwheICzIxxJ_X2CIRAshxi_ACnGOWoG6ny_BCgpE61nwM3Ce874iGOzIa3BGEEOC9WgFfnyfVSjOOq2Ki6GJttm5XOKkyi76uK3vvrEujC5sczPnGhrVhHhvfOMOamsaFZR_yC43k1fFxnR4A15Z5bN5-xzX4O7yy-3mur35dvV18_mm1YzQ0tKOoFFpKwTmhHI48EFoqMlAsB6x5dzYERnBeK8GNAza9ngcGK7CBWR66MkafDryTvNwMKM2oSTl5ZSqrvQgo3Ly30xwO7mN97LnBFFBK8GHZ4IUf80mF3lwWRvvVTBxzhJXGO5g16MKff8fdB_nVCd_QiFMKavzrEF7ROkUc07GnsQgKBe3ZHVLLm7Jxa2Kvzriq8jlo2PwLpi_1ONIasGk_pQQDKmEqC6y3AlmhAjBIatMmyPTPpdqyqmvSsVpb576Eizpsp36n7J6p5I0gTwCAQK2zA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311244745</pqid></control><display><type>article</type><title>Quantification of histopathological findings using a novel image analysis platform</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Horai, Yasushi ; Mizukawa, Mao ; Nishina, Hironobu ; Nishikawa, Satomi ; Ono, Yuko ; Takemoto, Kana ; Baba, Nobuyuki</creator><creatorcontrib>Horai, Yasushi ; Mizukawa, Mao ; Nishina, Hironobu ; Nishikawa, Satomi ; Ono, Yuko ; Takemoto, Kana ; Baba, Nobuyuki ; Sohyaku Innovative Research Division ; Mitsubishi Tanabe Pharma Corporation</creatorcontrib><description>Digital pathology, including image analysis and automatic diagnosis of pathological tissue, has been developed remarkably. HALO is an image analysis platform specialized for the study of pathological tissues, which enables tissue segmentation by using artificial intelligence. In this study, we used HALO to quantify various histopathological changes and findings that were difficult to analyze using conventional image processing software. Using the tissue classifier module, the morphological features of degeneration/necrosis of the hepatocytes and muscle fibers, bile duct in the liver, basophilic tubules and hyaline casts in the kidney, cortex in the thymus, and red pulp, white pulp, and marginal zone in the spleen were learned and separated, and areas of interest were quantified. Furthermore, using the cytonuclear module and vacuole module in combination with the tissue classifier module, the number of erythroblasts in the red pulp of the spleen and each area of acinar cells in the parotid gland were quantified. The results of quantitative analysis were correlated with the histopathological grades evaluated by pathologists. By using artificial intelligence and other functions of HALO, we recognized morphological features, analyzed histopathological changes, and quantified the histopathological grades of various findings. The analysis of histopathological changes using HALO is expected to support pathology evaluations.</description><identifier>ISSN: 0914-9198</identifier><identifier>EISSN: 1881-915X</identifier><identifier>EISSN: 1347-7404</identifier><identifier>DOI: 10.1293/tox.2019-0022</identifier><identifier>PMID: 31719761</identifier><language>eng</language><publisher>Tokyo: JAPANESE SOCIETY OF TOXICOLOGIC PATHOLOGY</publisher><subject>Acinar cells ; Artificial intelligence ; Bile ducts ; Classifiers ; Correlation analysis ; Degeneration ; Digital imaging ; digital pathology ; Erythroblasts ; Evaluation ; Feature recognition ; HALO ; Hepatocytes ; Image analysis ; Image processing ; Image segmentation ; Modules ; Morphology ; morphometry ; Muscles ; Necrosis ; Parotid gland ; Pathology ; Quantitative analysis ; Red pulp ; Renal cortex ; Spleen ; Tissues ; Tubules</subject><ispartof>Journal of Toxicologic Pathology, 2019, Vol.32(4), pp.319-327</ispartof><rights>2019 The Japanese Society of Toxicologic Pathology</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><rights>2019 The Japanese Society of Toxicologic Pathology 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c734t-4531dacf99283480b8b9c0c3b32cd2f88efd1e9786ab1bbcf62db72719907cb63</citedby><cites>FETCH-LOGICAL-c734t-4531dacf99283480b8b9c0c3b32cd2f88efd1e9786ab1bbcf62db72719907cb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831494/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831494/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1877,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Horai, Yasushi</creatorcontrib><creatorcontrib>Mizukawa, Mao</creatorcontrib><creatorcontrib>Nishina, Hironobu</creatorcontrib><creatorcontrib>Nishikawa, Satomi</creatorcontrib><creatorcontrib>Ono, Yuko</creatorcontrib><creatorcontrib>Takemoto, Kana</creatorcontrib><creatorcontrib>Baba, Nobuyuki</creatorcontrib><creatorcontrib>Sohyaku Innovative Research Division</creatorcontrib><creatorcontrib>Mitsubishi Tanabe Pharma Corporation</creatorcontrib><title>Quantification of histopathological findings using a novel image analysis platform</title><title>Journal of Toxicologic Pathology</title><addtitle>J Toxicol Pathol</addtitle><description>Digital pathology, including image analysis and automatic diagnosis of pathological tissue, has been developed remarkably. HALO is an image analysis platform specialized for the study of pathological tissues, which enables tissue segmentation by using artificial intelligence. In this study, we used HALO to quantify various histopathological changes and findings that were difficult to analyze using conventional image processing software. Using the tissue classifier module, the morphological features of degeneration/necrosis of the hepatocytes and muscle fibers, bile duct in the liver, basophilic tubules and hyaline casts in the kidney, cortex in the thymus, and red pulp, white pulp, and marginal zone in the spleen were learned and separated, and areas of interest were quantified. Furthermore, using the cytonuclear module and vacuole module in combination with the tissue classifier module, the number of erythroblasts in the red pulp of the spleen and each area of acinar cells in the parotid gland were quantified. The results of quantitative analysis were correlated with the histopathological grades evaluated by pathologists. By using artificial intelligence and other functions of HALO, we recognized morphological features, analyzed histopathological changes, and quantified the histopathological grades of various findings. The analysis of histopathological changes using HALO is expected to support pathology evaluations.</description><subject>Acinar cells</subject><subject>Artificial intelligence</subject><subject>Bile ducts</subject><subject>Classifiers</subject><subject>Correlation analysis</subject><subject>Degeneration</subject><subject>Digital imaging</subject><subject>digital pathology</subject><subject>Erythroblasts</subject><subject>Evaluation</subject><subject>Feature recognition</subject><subject>HALO</subject><subject>Hepatocytes</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Modules</subject><subject>Morphology</subject><subject>morphometry</subject><subject>Muscles</subject><subject>Necrosis</subject><subject>Parotid gland</subject><subject>Pathology</subject><subject>Quantitative analysis</subject><subject>Red pulp</subject><subject>Renal cortex</subject><subject>Spleen</subject><subject>Tissues</subject><subject>Tubules</subject><issn>0914-9198</issn><issn>1881-915X</issn><issn>1347-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdUc9vFCEUJkZjt6tH75N48TKVXzPAxcRsbGvSxGjaxBthGNhlw8IITGP_-zLdukYP8ID3ve99jw-AdwheICzIxxJ_X2CIRAshxi_ACnGOWoG6ny_BCgpE61nwM3Ce874iGOzIa3BGEEOC9WgFfnyfVSjOOq2Ki6GJttm5XOKkyi76uK3vvrEujC5sczPnGhrVhHhvfOMOamsaFZR_yC43k1fFxnR4A15Z5bN5-xzX4O7yy-3mur35dvV18_mm1YzQ0tKOoFFpKwTmhHI48EFoqMlAsB6x5dzYERnBeK8GNAza9ngcGK7CBWR66MkafDryTvNwMKM2oSTl5ZSqrvQgo3Ly30xwO7mN97LnBFFBK8GHZ4IUf80mF3lwWRvvVTBxzhJXGO5g16MKff8fdB_nVCd_QiFMKavzrEF7ROkUc07GnsQgKBe3ZHVLLm7Jxa2Kvzriq8jlo2PwLpi_1ONIasGk_pQQDKmEqC6y3AlmhAjBIatMmyPTPpdqyqmvSsVpb576Eizpsp36n7J6p5I0gTwCAQK2zA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Horai, Yasushi</creator><creator>Mizukawa, Mao</creator><creator>Nishina, Hironobu</creator><creator>Nishikawa, Satomi</creator><creator>Ono, Yuko</creator><creator>Takemoto, Kana</creator><creator>Baba, Nobuyuki</creator><general>JAPANESE SOCIETY OF TOXICOLOGIC PATHOLOGY</general><general>The Japanese Society of Toxicologic Pathology</general><general>Japan Science and Technology Agency</general><general>Japanese Society of Toxicologic Pathology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>Quantification of histopathological findings using a novel image analysis platform</title><author>Horai, Yasushi ; Mizukawa, Mao ; Nishina, Hironobu ; Nishikawa, Satomi ; Ono, Yuko ; Takemoto, Kana ; Baba, Nobuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c734t-4531dacf99283480b8b9c0c3b32cd2f88efd1e9786ab1bbcf62db72719907cb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acinar cells</topic><topic>Artificial intelligence</topic><topic>Bile ducts</topic><topic>Classifiers</topic><topic>Correlation analysis</topic><topic>Degeneration</topic><topic>Digital imaging</topic><topic>digital pathology</topic><topic>Erythroblasts</topic><topic>Evaluation</topic><topic>Feature recognition</topic><topic>HALO</topic><topic>Hepatocytes</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Modules</topic><topic>Morphology</topic><topic>morphometry</topic><topic>Muscles</topic><topic>Necrosis</topic><topic>Parotid gland</topic><topic>Pathology</topic><topic>Quantitative analysis</topic><topic>Red pulp</topic><topic>Renal cortex</topic><topic>Spleen</topic><topic>Tissues</topic><topic>Tubules</topic><toplevel>online_resources</toplevel><creatorcontrib>Horai, Yasushi</creatorcontrib><creatorcontrib>Mizukawa, Mao</creatorcontrib><creatorcontrib>Nishina, Hironobu</creatorcontrib><creatorcontrib>Nishikawa, Satomi</creatorcontrib><creatorcontrib>Ono, Yuko</creatorcontrib><creatorcontrib>Takemoto, Kana</creatorcontrib><creatorcontrib>Baba, Nobuyuki</creatorcontrib><creatorcontrib>Sohyaku Innovative Research Division</creatorcontrib><creatorcontrib>Mitsubishi Tanabe Pharma Corporation</creatorcontrib><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Toxicologic Pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horai, Yasushi</au><au>Mizukawa, Mao</au><au>Nishina, Hironobu</au><au>Nishikawa, Satomi</au><au>Ono, Yuko</au><au>Takemoto, Kana</au><au>Baba, Nobuyuki</au><aucorp>Sohyaku Innovative Research Division</aucorp><aucorp>Mitsubishi Tanabe Pharma Corporation</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of histopathological findings using a novel image analysis platform</atitle><jtitle>Journal of Toxicologic Pathology</jtitle><addtitle>J Toxicol Pathol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>32</volume><issue>4</issue><spage>319</spage><epage>327</epage><pages>319-327</pages><issn>0914-9198</issn><eissn>1881-915X</eissn><eissn>1347-7404</eissn><abstract>Digital pathology, including image analysis and automatic diagnosis of pathological tissue, has been developed remarkably. HALO is an image analysis platform specialized for the study of pathological tissues, which enables tissue segmentation by using artificial intelligence. In this study, we used HALO to quantify various histopathological changes and findings that were difficult to analyze using conventional image processing software. Using the tissue classifier module, the morphological features of degeneration/necrosis of the hepatocytes and muscle fibers, bile duct in the liver, basophilic tubules and hyaline casts in the kidney, cortex in the thymus, and red pulp, white pulp, and marginal zone in the spleen were learned and separated, and areas of interest were quantified. Furthermore, using the cytonuclear module and vacuole module in combination with the tissue classifier module, the number of erythroblasts in the red pulp of the spleen and each area of acinar cells in the parotid gland were quantified. The results of quantitative analysis were correlated with the histopathological grades evaluated by pathologists. By using artificial intelligence and other functions of HALO, we recognized morphological features, analyzed histopathological changes, and quantified the histopathological grades of various findings. The analysis of histopathological changes using HALO is expected to support pathology evaluations.</abstract><cop>Tokyo</cop><pub>JAPANESE SOCIETY OF TOXICOLOGIC PATHOLOGY</pub><pmid>31719761</pmid><doi>10.1293/tox.2019-0022</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-9198
ispartof Journal of Toxicologic Pathology, 2019, Vol.32(4), pp.319-327
issn 0914-9198
1881-915X
1347-7404
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6831494
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Acinar cells
Artificial intelligence
Bile ducts
Classifiers
Correlation analysis
Degeneration
Digital imaging
digital pathology
Erythroblasts
Evaluation
Feature recognition
HALO
Hepatocytes
Image analysis
Image processing
Image segmentation
Modules
Morphology
morphometry
Muscles
Necrosis
Parotid gland
Pathology
Quantitative analysis
Red pulp
Renal cortex
Spleen
Tissues
Tubules
title Quantification of histopathological findings using a novel image analysis platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20histopathological%20findings%20using%20a%20novel%20image%20analysis%20platform&rft.jtitle=Journal%20of%20Toxicologic%20Pathology&rft.au=Horai,%20Yasushi&rft.aucorp=Sohyaku%20Innovative%20Research%20Division&rft.date=2019-01-01&rft.volume=32&rft.issue=4&rft.spage=319&rft.epage=327&rft.pages=319-327&rft.issn=0914-9198&rft.eissn=1881-915X&rft_id=info:doi/10.1293/tox.2019-0022&rft_dat=%3Cproquest_pubme%3E2314250561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311244745&rft_id=info:pmid/31719761&rfr_iscdi=true