Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples

The importance to integrate survival analysis into genetics and genomics is widely recognized, but only a small number of statisticians have produced relevant work toward this study direction. For unrelated population data, functional regression (FR) models have been developed to test for associatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetic epidemiology 2019-12, Vol.43 (8), p.952-965
Hauptverfasser: Chiu, Chi‐yang, Zhang, Bingsong, Wang, Shuqi, Shao, Jingyi, Lakhal‐Chaieb, M'Hamed Lajmi, Cook, Richard J., Wilson, Alexander F., Bailey‐Wilson, Joan E., Xiong, Momiao, Fan, Ruzong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 965
container_issue 8
container_start_page 952
container_title Genetic epidemiology
container_volume 43
creator Chiu, Chi‐yang
Zhang, Bingsong
Wang, Shuqi
Shao, Jingyi
Lakhal‐Chaieb, M'Hamed Lajmi
Cook, Richard J.
Wilson, Alexander F.
Bailey‐Wilson, Joan E.
Xiong, Momiao
Fan, Ruzong
description The importance to integrate survival analysis into genetics and genomics is widely recognized, but only a small number of statisticians have produced relevant work toward this study direction. For unrelated population data, functional regression (FR) models have been developed to test for association between a quantitative/dichotomous/survival trait and genetic variants in a gene region. In major gene association analysis, these models have higher power than sequence kernel association tests. In this paper, we extend this approach to analyze censored traits for family data or related samples using FR based mixed effect Cox models (FamCoxME). The FamCoxME model effect of major gene as fixed mean via functional data analysis techniques, the local gene or polygene variations or both as random, and the correlation of pedigree members by kinship coefficients or genetic relationship matrix or both. The association between the censored trait and the major gene is tested by likelihood ratio tests (FamCoxME FR LRT). Simulation results indicate that the LRT control the type I error rates accurately/conservatively and have good power levels when both local gene or polygene variations are modeled. The proposed methods were applied to analyze a breast cancer data set from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). The FamCoxME provides a new tool for gene‐based analysis of family‐based studies or related samples.
doi_str_mv 10.1002/gepi.22254
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6829032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311494933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4484-138249e22598f3812f13bbb7241bf6d28eb3b7357ab3c720bedd7f3c93d066eb3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy1ERZfChQdAlrggpBT_STbJBamqylKpUnuAs2U748WVEy-eZOneEE_AM_IkOGy7Ag5cbHnm06cZ_wh5wdkpZ0y8XcPGnwohqvIRWXDWNoUQtXhMFqwuecFkWx2Tp4i3jHFettUTcix5xTIiFuT7Cgb4-e2H0Qgd1YjRej36OFA96LBDjzQ6ilPa-q0OdEzaj0i3XlM3DXYGczXBOgFifhxMvb_LJzgHdqQ23tE-dhCQupgyHvSYu6j7TQB8Ro6cDgjP7-8T8un9xcfzD8XV9ery_OyqsGXZlAWXjShbyGu2jZMNF45LY0wtSm7cshMNGGlqWdXaSFsLZqDraidtKzu2XObmCXm3924m00NnYcjbBLVJvtdpp6L26u_O4D-rddyqZSNaJkUWvL4XpPhlAhxV79FCCHqAOKESomkYFxWTGX31D3obp5T_KlNyTqFs5Uy92VM2RcQE7jAMZ2qOVs3Rqt_RZvjln-Mf0IcsM8D3wFcfYPcflVpd3Fzupb8AvrCzpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311494933</pqid></control><display><type>article</type><title>Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Chiu, Chi‐yang ; Zhang, Bingsong ; Wang, Shuqi ; Shao, Jingyi ; Lakhal‐Chaieb, M'Hamed Lajmi ; Cook, Richard J. ; Wilson, Alexander F. ; Bailey‐Wilson, Joan E. ; Xiong, Momiao ; Fan, Ruzong</creator><creatorcontrib>Chiu, Chi‐yang ; Zhang, Bingsong ; Wang, Shuqi ; Shao, Jingyi ; Lakhal‐Chaieb, M'Hamed Lajmi ; Cook, Richard J. ; Wilson, Alexander F. ; Bailey‐Wilson, Joan E. ; Xiong, Momiao ; Fan, Ruzong</creatorcontrib><description>The importance to integrate survival analysis into genetics and genomics is widely recognized, but only a small number of statisticians have produced relevant work toward this study direction. For unrelated population data, functional regression (FR) models have been developed to test for association between a quantitative/dichotomous/survival trait and genetic variants in a gene region. In major gene association analysis, these models have higher power than sequence kernel association tests. In this paper, we extend this approach to analyze censored traits for family data or related samples using FR based mixed effect Cox models (FamCoxME). The FamCoxME model effect of major gene as fixed mean via functional data analysis techniques, the local gene or polygene variations or both as random, and the correlation of pedigree members by kinship coefficients or genetic relationship matrix or both. The association between the censored trait and the major gene is tested by likelihood ratio tests (FamCoxME FR LRT). Simulation results indicate that the LRT control the type I error rates accurately/conservatively and have good power levels when both local gene or polygene variations are modeled. The proposed methods were applied to analyze a breast cancer data set from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). The FamCoxME provides a new tool for gene‐based analysis of family‐based studies or related samples.</description><identifier>ISSN: 0741-0395</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.22254</identifier><identifier>PMID: 31502722</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Association analysis ; association study ; BRCA1 protein ; BRCA2 protein ; Breast cancer ; common variants ; complex diseases ; Computer Simulation ; functional data analysis ; Genetic Association Studies ; Genetic diversity ; Genetic relationship ; Genetic Variation ; Genomics ; Humans ; mixed effect Cox models ; Models, Genetic ; Pedigree ; Phenotype ; Population studies ; Proportional Hazards Models ; rare variants ; Regression Analysis ; Survival ; Survival Analysis</subject><ispartof>Genetic epidemiology, 2019-12, Vol.43 (8), p.952-965</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4484-138249e22598f3812f13bbb7241bf6d28eb3b7357ab3c720bedd7f3c93d066eb3</citedby><cites>FETCH-LOGICAL-c4484-138249e22598f3812f13bbb7241bf6d28eb3b7357ab3c720bedd7f3c93d066eb3</cites><orcidid>0000-0002-7603-2135 ; 0000-0002-1414-4908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgepi.22254$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgepi.22254$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31502722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiu, Chi‐yang</creatorcontrib><creatorcontrib>Zhang, Bingsong</creatorcontrib><creatorcontrib>Wang, Shuqi</creatorcontrib><creatorcontrib>Shao, Jingyi</creatorcontrib><creatorcontrib>Lakhal‐Chaieb, M'Hamed Lajmi</creatorcontrib><creatorcontrib>Cook, Richard J.</creatorcontrib><creatorcontrib>Wilson, Alexander F.</creatorcontrib><creatorcontrib>Bailey‐Wilson, Joan E.</creatorcontrib><creatorcontrib>Xiong, Momiao</creatorcontrib><creatorcontrib>Fan, Ruzong</creatorcontrib><title>Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples</title><title>Genetic epidemiology</title><addtitle>Genet Epidemiol</addtitle><description>The importance to integrate survival analysis into genetics and genomics is widely recognized, but only a small number of statisticians have produced relevant work toward this study direction. For unrelated population data, functional regression (FR) models have been developed to test for association between a quantitative/dichotomous/survival trait and genetic variants in a gene region. In major gene association analysis, these models have higher power than sequence kernel association tests. In this paper, we extend this approach to analyze censored traits for family data or related samples using FR based mixed effect Cox models (FamCoxME). The FamCoxME model effect of major gene as fixed mean via functional data analysis techniques, the local gene or polygene variations or both as random, and the correlation of pedigree members by kinship coefficients or genetic relationship matrix or both. The association between the censored trait and the major gene is tested by likelihood ratio tests (FamCoxME FR LRT). Simulation results indicate that the LRT control the type I error rates accurately/conservatively and have good power levels when both local gene or polygene variations are modeled. The proposed methods were applied to analyze a breast cancer data set from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). The FamCoxME provides a new tool for gene‐based analysis of family‐based studies or related samples.</description><subject>Association analysis</subject><subject>association study</subject><subject>BRCA1 protein</subject><subject>BRCA2 protein</subject><subject>Breast cancer</subject><subject>common variants</subject><subject>complex diseases</subject><subject>Computer Simulation</subject><subject>functional data analysis</subject><subject>Genetic Association Studies</subject><subject>Genetic diversity</subject><subject>Genetic relationship</subject><subject>Genetic Variation</subject><subject>Genomics</subject><subject>Humans</subject><subject>mixed effect Cox models</subject><subject>Models, Genetic</subject><subject>Pedigree</subject><subject>Phenotype</subject><subject>Population studies</subject><subject>Proportional Hazards Models</subject><subject>rare variants</subject><subject>Regression Analysis</subject><subject>Survival</subject><subject>Survival Analysis</subject><issn>0741-0395</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQhy1ERZfChQdAlrggpBT_STbJBamqylKpUnuAs2U748WVEy-eZOneEE_AM_IkOGy7Ag5cbHnm06cZ_wh5wdkpZ0y8XcPGnwohqvIRWXDWNoUQtXhMFqwuecFkWx2Tp4i3jHFettUTcix5xTIiFuT7Cgb4-e2H0Qgd1YjRej36OFA96LBDjzQ6ilPa-q0OdEzaj0i3XlM3DXYGczXBOgFifhxMvb_LJzgHdqQ23tE-dhCQupgyHvSYu6j7TQB8Ro6cDgjP7-8T8un9xcfzD8XV9ery_OyqsGXZlAWXjShbyGu2jZMNF45LY0wtSm7cshMNGGlqWdXaSFsLZqDraidtKzu2XObmCXm3924m00NnYcjbBLVJvtdpp6L26u_O4D-rddyqZSNaJkUWvL4XpPhlAhxV79FCCHqAOKESomkYFxWTGX31D3obp5T_KlNyTqFs5Uy92VM2RcQE7jAMZ2qOVs3Rqt_RZvjln-Mf0IcsM8D3wFcfYPcflVpd3Fzupb8AvrCzpA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Chiu, Chi‐yang</creator><creator>Zhang, Bingsong</creator><creator>Wang, Shuqi</creator><creator>Shao, Jingyi</creator><creator>Lakhal‐Chaieb, M'Hamed Lajmi</creator><creator>Cook, Richard J.</creator><creator>Wilson, Alexander F.</creator><creator>Bailey‐Wilson, Joan E.</creator><creator>Xiong, Momiao</creator><creator>Fan, Ruzong</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7603-2135</orcidid><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid></search><sort><creationdate>201912</creationdate><title>Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples</title><author>Chiu, Chi‐yang ; Zhang, Bingsong ; Wang, Shuqi ; Shao, Jingyi ; Lakhal‐Chaieb, M'Hamed Lajmi ; Cook, Richard J. ; Wilson, Alexander F. ; Bailey‐Wilson, Joan E. ; Xiong, Momiao ; Fan, Ruzong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4484-138249e22598f3812f13bbb7241bf6d28eb3b7357ab3c720bedd7f3c93d066eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Association analysis</topic><topic>association study</topic><topic>BRCA1 protein</topic><topic>BRCA2 protein</topic><topic>Breast cancer</topic><topic>common variants</topic><topic>complex diseases</topic><topic>Computer Simulation</topic><topic>functional data analysis</topic><topic>Genetic Association Studies</topic><topic>Genetic diversity</topic><topic>Genetic relationship</topic><topic>Genetic Variation</topic><topic>Genomics</topic><topic>Humans</topic><topic>mixed effect Cox models</topic><topic>Models, Genetic</topic><topic>Pedigree</topic><topic>Phenotype</topic><topic>Population studies</topic><topic>Proportional Hazards Models</topic><topic>rare variants</topic><topic>Regression Analysis</topic><topic>Survival</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Chi‐yang</creatorcontrib><creatorcontrib>Zhang, Bingsong</creatorcontrib><creatorcontrib>Wang, Shuqi</creatorcontrib><creatorcontrib>Shao, Jingyi</creatorcontrib><creatorcontrib>Lakhal‐Chaieb, M'Hamed Lajmi</creatorcontrib><creatorcontrib>Cook, Richard J.</creatorcontrib><creatorcontrib>Wilson, Alexander F.</creatorcontrib><creatorcontrib>Bailey‐Wilson, Joan E.</creatorcontrib><creatorcontrib>Xiong, Momiao</creatorcontrib><creatorcontrib>Fan, Ruzong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Chi‐yang</au><au>Zhang, Bingsong</au><au>Wang, Shuqi</au><au>Shao, Jingyi</au><au>Lakhal‐Chaieb, M'Hamed Lajmi</au><au>Cook, Richard J.</au><au>Wilson, Alexander F.</au><au>Bailey‐Wilson, Joan E.</au><au>Xiong, Momiao</au><au>Fan, Ruzong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet Epidemiol</addtitle><date>2019-12</date><risdate>2019</risdate><volume>43</volume><issue>8</issue><spage>952</spage><epage>965</epage><pages>952-965</pages><issn>0741-0395</issn><eissn>1098-2272</eissn><abstract>The importance to integrate survival analysis into genetics and genomics is widely recognized, but only a small number of statisticians have produced relevant work toward this study direction. For unrelated population data, functional regression (FR) models have been developed to test for association between a quantitative/dichotomous/survival trait and genetic variants in a gene region. In major gene association analysis, these models have higher power than sequence kernel association tests. In this paper, we extend this approach to analyze censored traits for family data or related samples using FR based mixed effect Cox models (FamCoxME). The FamCoxME model effect of major gene as fixed mean via functional data analysis techniques, the local gene or polygene variations or both as random, and the correlation of pedigree members by kinship coefficients or genetic relationship matrix or both. The association between the censored trait and the major gene is tested by likelihood ratio tests (FamCoxME FR LRT). Simulation results indicate that the LRT control the type I error rates accurately/conservatively and have good power levels when both local gene or polygene variations are modeled. The proposed methods were applied to analyze a breast cancer data set from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). The FamCoxME provides a new tool for gene‐based analysis of family‐based studies or related samples.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31502722</pmid><doi>10.1002/gepi.22254</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7603-2135</orcidid><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-0395
ispartof Genetic epidemiology, 2019-12, Vol.43 (8), p.952-965
issn 0741-0395
1098-2272
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6829032
source MEDLINE; Wiley Online Library All Journals
subjects Association analysis
association study
BRCA1 protein
BRCA2 protein
Breast cancer
common variants
complex diseases
Computer Simulation
functional data analysis
Genetic Association Studies
Genetic diversity
Genetic relationship
Genetic Variation
Genomics
Humans
mixed effect Cox models
Models, Genetic
Pedigree
Phenotype
Population studies
Proportional Hazards Models
rare variants
Regression Analysis
Survival
Survival Analysis
title Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%E2%80%90based%20association%20analysis%20of%20survival%20traits%20via%20functional%20regression%E2%80%90based%20mixed%20effect%20cox%20models%20for%20related%20samples&rft.jtitle=Genetic%20epidemiology&rft.au=Chiu,%20Chi%E2%80%90yang&rft.date=2019-12&rft.volume=43&rft.issue=8&rft.spage=952&rft.epage=965&rft.pages=952-965&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.22254&rft_dat=%3Cproquest_pubme%3E2311494933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311494933&rft_id=info:pmid/31502722&rfr_iscdi=true