Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples
The importance to integrate survival analysis into genetics and genomics is widely recognized, but only a small number of statisticians have produced relevant work toward this study direction. For unrelated population data, functional regression (FR) models have been developed to test for associatio...
Gespeichert in:
Veröffentlicht in: | Genetic epidemiology 2019-12, Vol.43 (8), p.952-965 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 965 |
---|---|
container_issue | 8 |
container_start_page | 952 |
container_title | Genetic epidemiology |
container_volume | 43 |
creator | Chiu, Chi‐yang Zhang, Bingsong Wang, Shuqi Shao, Jingyi Lakhal‐Chaieb, M'Hamed Lajmi Cook, Richard J. Wilson, Alexander F. Bailey‐Wilson, Joan E. Xiong, Momiao Fan, Ruzong |
description | The importance to integrate survival analysis into genetics and genomics is widely recognized, but only a small number of statisticians have produced relevant work toward this study direction. For unrelated population data, functional regression (FR) models have been developed to test for association between a quantitative/dichotomous/survival trait and genetic variants in a gene region. In major gene association analysis, these models have higher power than sequence kernel association tests. In this paper, we extend this approach to analyze censored traits for family data or related samples using FR based mixed effect Cox models (FamCoxME). The FamCoxME model effect of major gene as fixed mean via functional data analysis techniques, the local gene or polygene variations or both as random, and the correlation of pedigree members by kinship coefficients or genetic relationship matrix or both. The association between the censored trait and the major gene is tested by likelihood ratio tests (FamCoxME FR LRT). Simulation results indicate that the LRT control the type I error rates accurately/conservatively and have good power levels when both local gene or polygene variations are modeled. The proposed methods were applied to analyze a breast cancer data set from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). The FamCoxME provides a new tool for gene‐based analysis of family‐based studies or related samples. |
doi_str_mv | 10.1002/gepi.22254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6829032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311494933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4484-138249e22598f3812f13bbb7241bf6d28eb3b7357ab3c720bedd7f3c93d066eb3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy1ERZfChQdAlrggpBT_STbJBamqylKpUnuAs2U748WVEy-eZOneEE_AM_IkOGy7Ag5cbHnm06cZ_wh5wdkpZ0y8XcPGnwohqvIRWXDWNoUQtXhMFqwuecFkWx2Tp4i3jHFettUTcix5xTIiFuT7Cgb4-e2H0Qgd1YjRej36OFA96LBDjzQ6ilPa-q0OdEzaj0i3XlM3DXYGczXBOgFifhxMvb_LJzgHdqQ23tE-dhCQupgyHvSYu6j7TQB8Ro6cDgjP7-8T8un9xcfzD8XV9ery_OyqsGXZlAWXjShbyGu2jZMNF45LY0wtSm7cshMNGGlqWdXaSFsLZqDraidtKzu2XObmCXm3924m00NnYcjbBLVJvtdpp6L26u_O4D-rddyqZSNaJkUWvL4XpPhlAhxV79FCCHqAOKESomkYFxWTGX31D3obp5T_KlNyTqFs5Uy92VM2RcQE7jAMZ2qOVs3Rqt_RZvjln-Mf0IcsM8D3wFcfYPcflVpd3Fzupb8AvrCzpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311494933</pqid></control><display><type>article</type><title>Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Chiu, Chi‐yang ; Zhang, Bingsong ; Wang, Shuqi ; Shao, Jingyi ; Lakhal‐Chaieb, M'Hamed Lajmi ; Cook, Richard J. ; Wilson, Alexander F. ; Bailey‐Wilson, Joan E. ; Xiong, Momiao ; Fan, Ruzong</creator><creatorcontrib>Chiu, Chi‐yang ; Zhang, Bingsong ; Wang, Shuqi ; Shao, Jingyi ; Lakhal‐Chaieb, M'Hamed Lajmi ; Cook, Richard J. ; Wilson, Alexander F. ; Bailey‐Wilson, Joan E. ; Xiong, Momiao ; Fan, Ruzong</creatorcontrib><description>The importance to integrate survival analysis into genetics and genomics is widely recognized, but only a small number of statisticians have produced relevant work toward this study direction. For unrelated population data, functional regression (FR) models have been developed to test for association between a quantitative/dichotomous/survival trait and genetic variants in a gene region. In major gene association analysis, these models have higher power than sequence kernel association tests. In this paper, we extend this approach to analyze censored traits for family data or related samples using FR based mixed effect Cox models (FamCoxME). The FamCoxME model effect of major gene as fixed mean via functional data analysis techniques, the local gene or polygene variations or both as random, and the correlation of pedigree members by kinship coefficients or genetic relationship matrix or both. The association between the censored trait and the major gene is tested by likelihood ratio tests (FamCoxME FR LRT). Simulation results indicate that the LRT control the type I error rates accurately/conservatively and have good power levels when both local gene or polygene variations are modeled. The proposed methods were applied to analyze a breast cancer data set from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). The FamCoxME provides a new tool for gene‐based analysis of family‐based studies or related samples.</description><identifier>ISSN: 0741-0395</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.22254</identifier><identifier>PMID: 31502722</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Association analysis ; association study ; BRCA1 protein ; BRCA2 protein ; Breast cancer ; common variants ; complex diseases ; Computer Simulation ; functional data analysis ; Genetic Association Studies ; Genetic diversity ; Genetic relationship ; Genetic Variation ; Genomics ; Humans ; mixed effect Cox models ; Models, Genetic ; Pedigree ; Phenotype ; Population studies ; Proportional Hazards Models ; rare variants ; Regression Analysis ; Survival ; Survival Analysis</subject><ispartof>Genetic epidemiology, 2019-12, Vol.43 (8), p.952-965</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4484-138249e22598f3812f13bbb7241bf6d28eb3b7357ab3c720bedd7f3c93d066eb3</citedby><cites>FETCH-LOGICAL-c4484-138249e22598f3812f13bbb7241bf6d28eb3b7357ab3c720bedd7f3c93d066eb3</cites><orcidid>0000-0002-7603-2135 ; 0000-0002-1414-4908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgepi.22254$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgepi.22254$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31502722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiu, Chi‐yang</creatorcontrib><creatorcontrib>Zhang, Bingsong</creatorcontrib><creatorcontrib>Wang, Shuqi</creatorcontrib><creatorcontrib>Shao, Jingyi</creatorcontrib><creatorcontrib>Lakhal‐Chaieb, M'Hamed Lajmi</creatorcontrib><creatorcontrib>Cook, Richard J.</creatorcontrib><creatorcontrib>Wilson, Alexander F.</creatorcontrib><creatorcontrib>Bailey‐Wilson, Joan E.</creatorcontrib><creatorcontrib>Xiong, Momiao</creatorcontrib><creatorcontrib>Fan, Ruzong</creatorcontrib><title>Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples</title><title>Genetic epidemiology</title><addtitle>Genet Epidemiol</addtitle><description>The importance to integrate survival analysis into genetics and genomics is widely recognized, but only a small number of statisticians have produced relevant work toward this study direction. For unrelated population data, functional regression (FR) models have been developed to test for association between a quantitative/dichotomous/survival trait and genetic variants in a gene region. In major gene association analysis, these models have higher power than sequence kernel association tests. In this paper, we extend this approach to analyze censored traits for family data or related samples using FR based mixed effect Cox models (FamCoxME). The FamCoxME model effect of major gene as fixed mean via functional data analysis techniques, the local gene or polygene variations or both as random, and the correlation of pedigree members by kinship coefficients or genetic relationship matrix or both. The association between the censored trait and the major gene is tested by likelihood ratio tests (FamCoxME FR LRT). Simulation results indicate that the LRT control the type I error rates accurately/conservatively and have good power levels when both local gene or polygene variations are modeled. The proposed methods were applied to analyze a breast cancer data set from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). The FamCoxME provides a new tool for gene‐based analysis of family‐based studies or related samples.</description><subject>Association analysis</subject><subject>association study</subject><subject>BRCA1 protein</subject><subject>BRCA2 protein</subject><subject>Breast cancer</subject><subject>common variants</subject><subject>complex diseases</subject><subject>Computer Simulation</subject><subject>functional data analysis</subject><subject>Genetic Association Studies</subject><subject>Genetic diversity</subject><subject>Genetic relationship</subject><subject>Genetic Variation</subject><subject>Genomics</subject><subject>Humans</subject><subject>mixed effect Cox models</subject><subject>Models, Genetic</subject><subject>Pedigree</subject><subject>Phenotype</subject><subject>Population studies</subject><subject>Proportional Hazards Models</subject><subject>rare variants</subject><subject>Regression Analysis</subject><subject>Survival</subject><subject>Survival Analysis</subject><issn>0741-0395</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQhy1ERZfChQdAlrggpBT_STbJBamqylKpUnuAs2U748WVEy-eZOneEE_AM_IkOGy7Ag5cbHnm06cZ_wh5wdkpZ0y8XcPGnwohqvIRWXDWNoUQtXhMFqwuecFkWx2Tp4i3jHFettUTcix5xTIiFuT7Cgb4-e2H0Qgd1YjRej36OFA96LBDjzQ6ilPa-q0OdEzaj0i3XlM3DXYGczXBOgFifhxMvb_LJzgHdqQ23tE-dhCQupgyHvSYu6j7TQB8Ro6cDgjP7-8T8un9xcfzD8XV9ery_OyqsGXZlAWXjShbyGu2jZMNF45LY0wtSm7cshMNGGlqWdXaSFsLZqDraidtKzu2XObmCXm3924m00NnYcjbBLVJvtdpp6L26u_O4D-rddyqZSNaJkUWvL4XpPhlAhxV79FCCHqAOKESomkYFxWTGX31D3obp5T_KlNyTqFs5Uy92VM2RcQE7jAMZ2qOVs3Rqt_RZvjln-Mf0IcsM8D3wFcfYPcflVpd3Fzupb8AvrCzpA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Chiu, Chi‐yang</creator><creator>Zhang, Bingsong</creator><creator>Wang, Shuqi</creator><creator>Shao, Jingyi</creator><creator>Lakhal‐Chaieb, M'Hamed Lajmi</creator><creator>Cook, Richard J.</creator><creator>Wilson, Alexander F.</creator><creator>Bailey‐Wilson, Joan E.</creator><creator>Xiong, Momiao</creator><creator>Fan, Ruzong</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7603-2135</orcidid><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid></search><sort><creationdate>201912</creationdate><title>Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples</title><author>Chiu, Chi‐yang ; Zhang, Bingsong ; Wang, Shuqi ; Shao, Jingyi ; Lakhal‐Chaieb, M'Hamed Lajmi ; Cook, Richard J. ; Wilson, Alexander F. ; Bailey‐Wilson, Joan E. ; Xiong, Momiao ; Fan, Ruzong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4484-138249e22598f3812f13bbb7241bf6d28eb3b7357ab3c720bedd7f3c93d066eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Association analysis</topic><topic>association study</topic><topic>BRCA1 protein</topic><topic>BRCA2 protein</topic><topic>Breast cancer</topic><topic>common variants</topic><topic>complex diseases</topic><topic>Computer Simulation</topic><topic>functional data analysis</topic><topic>Genetic Association Studies</topic><topic>Genetic diversity</topic><topic>Genetic relationship</topic><topic>Genetic Variation</topic><topic>Genomics</topic><topic>Humans</topic><topic>mixed effect Cox models</topic><topic>Models, Genetic</topic><topic>Pedigree</topic><topic>Phenotype</topic><topic>Population studies</topic><topic>Proportional Hazards Models</topic><topic>rare variants</topic><topic>Regression Analysis</topic><topic>Survival</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Chi‐yang</creatorcontrib><creatorcontrib>Zhang, Bingsong</creatorcontrib><creatorcontrib>Wang, Shuqi</creatorcontrib><creatorcontrib>Shao, Jingyi</creatorcontrib><creatorcontrib>Lakhal‐Chaieb, M'Hamed Lajmi</creatorcontrib><creatorcontrib>Cook, Richard J.</creatorcontrib><creatorcontrib>Wilson, Alexander F.</creatorcontrib><creatorcontrib>Bailey‐Wilson, Joan E.</creatorcontrib><creatorcontrib>Xiong, Momiao</creatorcontrib><creatorcontrib>Fan, Ruzong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Chi‐yang</au><au>Zhang, Bingsong</au><au>Wang, Shuqi</au><au>Shao, Jingyi</au><au>Lakhal‐Chaieb, M'Hamed Lajmi</au><au>Cook, Richard J.</au><au>Wilson, Alexander F.</au><au>Bailey‐Wilson, Joan E.</au><au>Xiong, Momiao</au><au>Fan, Ruzong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet Epidemiol</addtitle><date>2019-12</date><risdate>2019</risdate><volume>43</volume><issue>8</issue><spage>952</spage><epage>965</epage><pages>952-965</pages><issn>0741-0395</issn><eissn>1098-2272</eissn><abstract>The importance to integrate survival analysis into genetics and genomics is widely recognized, but only a small number of statisticians have produced relevant work toward this study direction. For unrelated population data, functional regression (FR) models have been developed to test for association between a quantitative/dichotomous/survival trait and genetic variants in a gene region. In major gene association analysis, these models have higher power than sequence kernel association tests. In this paper, we extend this approach to analyze censored traits for family data or related samples using FR based mixed effect Cox models (FamCoxME). The FamCoxME model effect of major gene as fixed mean via functional data analysis techniques, the local gene or polygene variations or both as random, and the correlation of pedigree members by kinship coefficients or genetic relationship matrix or both. The association between the censored trait and the major gene is tested by likelihood ratio tests (FamCoxME FR LRT). Simulation results indicate that the LRT control the type I error rates accurately/conservatively and have good power levels when both local gene or polygene variations are modeled. The proposed methods were applied to analyze a breast cancer data set from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). The FamCoxME provides a new tool for gene‐based analysis of family‐based studies or related samples.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31502722</pmid><doi>10.1002/gepi.22254</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7603-2135</orcidid><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-0395 |
ispartof | Genetic epidemiology, 2019-12, Vol.43 (8), p.952-965 |
issn | 0741-0395 1098-2272 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6829032 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Association analysis association study BRCA1 protein BRCA2 protein Breast cancer common variants complex diseases Computer Simulation functional data analysis Genetic Association Studies Genetic diversity Genetic relationship Genetic Variation Genomics Humans mixed effect Cox models Models, Genetic Pedigree Phenotype Population studies Proportional Hazards Models rare variants Regression Analysis Survival Survival Analysis |
title | Gene‐based association analysis of survival traits via functional regression‐based mixed effect cox models for related samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%E2%80%90based%20association%20analysis%20of%20survival%20traits%20via%20functional%20regression%E2%80%90based%20mixed%20effect%20cox%20models%20for%20related%20samples&rft.jtitle=Genetic%20epidemiology&rft.au=Chiu,%20Chi%E2%80%90yang&rft.date=2019-12&rft.volume=43&rft.issue=8&rft.spage=952&rft.epage=965&rft.pages=952-965&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.22254&rft_dat=%3Cproquest_pubme%3E2311494933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311494933&rft_id=info:pmid/31502722&rfr_iscdi=true |