Identification and validation of a prognostic proteomic signature for cervical cancer

AbstractObjectiveTo date, The Cancer Genome Atlas (TCGA) has provided the most extensive molecular characterization of invasive cervical cancer (ICC). Analysis of reverse phase protein array (RPPA) data from TCGA samples showed that cervical cancers could be stratified into 3 clusters exhibiting sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gynecologic oncology 2019-11, Vol.155 (2), p.324-330
Hauptverfasser: Rader, Janet S, Pan, Amy, Corbin, Bradley, Iden, Marissa, Lu, Yiling, Vellano, Christopher P, Akbani, Rehan, Mills, Gordon B, Simpson, Pippa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 330
container_issue 2
container_start_page 324
container_title Gynecologic oncology
container_volume 155
creator Rader, Janet S
Pan, Amy
Corbin, Bradley
Iden, Marissa
Lu, Yiling
Vellano, Christopher P
Akbani, Rehan
Mills, Gordon B
Simpson, Pippa
description AbstractObjectiveTo date, The Cancer Genome Atlas (TCGA) has provided the most extensive molecular characterization of invasive cervical cancer (ICC). Analysis of reverse phase protein array (RPPA) data from TCGA samples showed that cervical cancers could be stratified into 3 clusters exhibiting significant differences in survival outcome: hormone, EMT, and PI3K/AKT. The goals of the current study were to: 1) validate the TCGA RPPA results in an independent cohort of ICC patients and 2) to develop and validate an algorithm encompassing a small antibody set for clinical utility. MethodsSubjects consisted of 2 ICC patient cohorts with accompanying RPPA and clinical-pathologic data: 155 samples from TCGA (TCGA-155) and 61 additional, unique samples (MCW-61). Using data from 173 common RPPA antibodies, we replicated Silhouette clustering analysis in both ICC cohorts. Further, an index score for each patient was calculated from the survival-associated antibodies (SAAs) identified using Random survival forests (RSF) and the Cox proportional hazard regression model. Kaplan-Meier survival analysis and the log-rank test were performed to assess and compare cluster or risk group survival outcome. ResultsIn addition to validating the prognostic ability of the proteomic clusters reported by TCGA, we developed an algorithm based on 22 unique antibodies (SAAs) that stratified women with ICC into low-, medium-, or high-risk survival groups. ConclusionsWe provide a signature of 22 antibodies which accurately predicted survival outcome in 2 separate groups of ICC patients. Future studies examining these candidate biomarkers in additional ICC cohorts is warranted to fully determine their clinical potential.
doi_str_mv 10.1016/j.ygyno.2019.08.021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6825895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0090825819314738</els_id><sourcerecordid>2283999799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-2542f87d97097d83e4fb432444c2531e56c787cf87a4c5067f8c45135fce8c203</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi1ERbeFX4CEcuSSMP5K7AOVUAWlUqUeSs-W60wWL1l7sZOV9t_jsKUCLj15LL_zzsdjQt5SaCjQ9sOmOawPITYMqG5ANcDoC7KioGXdKqlfkhWAhloxqU7JWc4bAOBA2StyyqnoOqZgRe6vewyTH7yzk4-hsqGv9nb0_fEah8pWuxTXIebJuyWcMG5LlP062GlOWA0xVQ7TvliMlbOhxK_JyWDHjG8ez3Ny_-Xzt8uv9c3t1fXlp5vaSSqmmknBBtX1ugPd9YqjGB4EZ0IIxySnKFvXqc4ViRVOQtsNyglJuRwcKseAn5OLo-9ufthi78ooyY5ml_zWpoOJ1pt_X4L_btZxb9plK1oWg_ePBin-nDFPZuuzw3G0AeOcDWOKa607rYuUH6UuxZwTDk9lKJgFiNmY30DMAsSAMgVIyXr3d4dPOX8IFMHHowDLnvYek8nOY1li7xO6yfTRP1Pg4r98N_qwsPiBB8ybOKdQEBhqMjNg7pY_sQxP9dICV_wXvra0Iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283999799</pqid></control><display><type>article</type><title>Identification and validation of a prognostic proteomic signature for cervical cancer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rader, Janet S ; Pan, Amy ; Corbin, Bradley ; Iden, Marissa ; Lu, Yiling ; Vellano, Christopher P ; Akbani, Rehan ; Mills, Gordon B ; Simpson, Pippa</creator><creatorcontrib>Rader, Janet S ; Pan, Amy ; Corbin, Bradley ; Iden, Marissa ; Lu, Yiling ; Vellano, Christopher P ; Akbani, Rehan ; Mills, Gordon B ; Simpson, Pippa</creatorcontrib><description>AbstractObjectiveTo date, The Cancer Genome Atlas (TCGA) has provided the most extensive molecular characterization of invasive cervical cancer (ICC). Analysis of reverse phase protein array (RPPA) data from TCGA samples showed that cervical cancers could be stratified into 3 clusters exhibiting significant differences in survival outcome: hormone, EMT, and PI3K/AKT. The goals of the current study were to: 1) validate the TCGA RPPA results in an independent cohort of ICC patients and 2) to develop and validate an algorithm encompassing a small antibody set for clinical utility. MethodsSubjects consisted of 2 ICC patient cohorts with accompanying RPPA and clinical-pathologic data: 155 samples from TCGA (TCGA-155) and 61 additional, unique samples (MCW-61). Using data from 173 common RPPA antibodies, we replicated Silhouette clustering analysis in both ICC cohorts. Further, an index score for each patient was calculated from the survival-associated antibodies (SAAs) identified using Random survival forests (RSF) and the Cox proportional hazard regression model. Kaplan-Meier survival analysis and the log-rank test were performed to assess and compare cluster or risk group survival outcome. ResultsIn addition to validating the prognostic ability of the proteomic clusters reported by TCGA, we developed an algorithm based on 22 unique antibodies (SAAs) that stratified women with ICC into low-, medium-, or high-risk survival groups. ConclusionsWe provide a signature of 22 antibodies which accurately predicted survival outcome in 2 separate groups of ICC patients. Future studies examining these candidate biomarkers in additional ICC cohorts is warranted to fully determine their clinical potential.</description><identifier>ISSN: 0090-8258</identifier><identifier>EISSN: 1095-6859</identifier><identifier>DOI: 10.1016/j.ygyno.2019.08.021</identifier><identifier>PMID: 31477280</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Antibodies, Neoplasm - genetics ; Antibodies, Neoplasm - metabolism ; Biomarkers, Tumor - metabolism ; Cervical cancer ; Female ; Hematology, Oncology, and Palliative Medicine ; Humans ; Kaplan-Meier Estimate ; Middle Aged ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Obstetrics and Gynecology ; Prognostic biomarkers ; Proteomics ; Reverse phase protein array ; Risk Factors ; Survival risk ; The Cancer Genome Atlas (TCGA) ; Uterine Cervical Neoplasms - genetics ; Uterine Cervical Neoplasms - immunology ; Uterine Cervical Neoplasms - mortality</subject><ispartof>Gynecologic oncology, 2019-11, Vol.155 (2), p.324-330</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-2542f87d97097d83e4fb432444c2531e56c787cf87a4c5067f8c45135fce8c203</citedby><cites>FETCH-LOGICAL-c514t-2542f87d97097d83e4fb432444c2531e56c787cf87a4c5067f8c45135fce8c203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ygyno.2019.08.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31477280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rader, Janet S</creatorcontrib><creatorcontrib>Pan, Amy</creatorcontrib><creatorcontrib>Corbin, Bradley</creatorcontrib><creatorcontrib>Iden, Marissa</creatorcontrib><creatorcontrib>Lu, Yiling</creatorcontrib><creatorcontrib>Vellano, Christopher P</creatorcontrib><creatorcontrib>Akbani, Rehan</creatorcontrib><creatorcontrib>Mills, Gordon B</creatorcontrib><creatorcontrib>Simpson, Pippa</creatorcontrib><title>Identification and validation of a prognostic proteomic signature for cervical cancer</title><title>Gynecologic oncology</title><addtitle>Gynecol Oncol</addtitle><description>AbstractObjectiveTo date, The Cancer Genome Atlas (TCGA) has provided the most extensive molecular characterization of invasive cervical cancer (ICC). Analysis of reverse phase protein array (RPPA) data from TCGA samples showed that cervical cancers could be stratified into 3 clusters exhibiting significant differences in survival outcome: hormone, EMT, and PI3K/AKT. The goals of the current study were to: 1) validate the TCGA RPPA results in an independent cohort of ICC patients and 2) to develop and validate an algorithm encompassing a small antibody set for clinical utility. MethodsSubjects consisted of 2 ICC patient cohorts with accompanying RPPA and clinical-pathologic data: 155 samples from TCGA (TCGA-155) and 61 additional, unique samples (MCW-61). Using data from 173 common RPPA antibodies, we replicated Silhouette clustering analysis in both ICC cohorts. Further, an index score for each patient was calculated from the survival-associated antibodies (SAAs) identified using Random survival forests (RSF) and the Cox proportional hazard regression model. Kaplan-Meier survival analysis and the log-rank test were performed to assess and compare cluster or risk group survival outcome. ResultsIn addition to validating the prognostic ability of the proteomic clusters reported by TCGA, we developed an algorithm based on 22 unique antibodies (SAAs) that stratified women with ICC into low-, medium-, or high-risk survival groups. ConclusionsWe provide a signature of 22 antibodies which accurately predicted survival outcome in 2 separate groups of ICC patients. Future studies examining these candidate biomarkers in additional ICC cohorts is warranted to fully determine their clinical potential.</description><subject>Adult</subject><subject>Antibodies, Neoplasm - genetics</subject><subject>Antibodies, Neoplasm - metabolism</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Cervical cancer</subject><subject>Female</subject><subject>Hematology, Oncology, and Palliative Medicine</subject><subject>Humans</subject><subject>Kaplan-Meier Estimate</subject><subject>Middle Aged</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Obstetrics and Gynecology</subject><subject>Prognostic biomarkers</subject><subject>Proteomics</subject><subject>Reverse phase protein array</subject><subject>Risk Factors</subject><subject>Survival risk</subject><subject>The Cancer Genome Atlas (TCGA)</subject><subject>Uterine Cervical Neoplasms - genetics</subject><subject>Uterine Cervical Neoplasms - immunology</subject><subject>Uterine Cervical Neoplasms - mortality</subject><issn>0090-8258</issn><issn>1095-6859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhi1ERbeFX4CEcuSSMP5K7AOVUAWlUqUeSs-W60wWL1l7sZOV9t_jsKUCLj15LL_zzsdjQt5SaCjQ9sOmOawPITYMqG5ANcDoC7KioGXdKqlfkhWAhloxqU7JWc4bAOBA2StyyqnoOqZgRe6vewyTH7yzk4-hsqGv9nb0_fEah8pWuxTXIebJuyWcMG5LlP062GlOWA0xVQ7TvliMlbOhxK_JyWDHjG8ez3Ny_-Xzt8uv9c3t1fXlp5vaSSqmmknBBtX1ugPd9YqjGB4EZ0IIxySnKFvXqc4ViRVOQtsNyglJuRwcKseAn5OLo-9ufthi78ooyY5ml_zWpoOJ1pt_X4L_btZxb9plK1oWg_ePBin-nDFPZuuzw3G0AeOcDWOKa607rYuUH6UuxZwTDk9lKJgFiNmY30DMAsSAMgVIyXr3d4dPOX8IFMHHowDLnvYek8nOY1li7xO6yfTRP1Pg4r98N_qwsPiBB8ybOKdQEBhqMjNg7pY_sQxP9dICV_wXvra0Iw</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Rader, Janet S</creator><creator>Pan, Amy</creator><creator>Corbin, Bradley</creator><creator>Iden, Marissa</creator><creator>Lu, Yiling</creator><creator>Vellano, Christopher P</creator><creator>Akbani, Rehan</creator><creator>Mills, Gordon B</creator><creator>Simpson, Pippa</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191101</creationdate><title>Identification and validation of a prognostic proteomic signature for cervical cancer</title><author>Rader, Janet S ; Pan, Amy ; Corbin, Bradley ; Iden, Marissa ; Lu, Yiling ; Vellano, Christopher P ; Akbani, Rehan ; Mills, Gordon B ; Simpson, Pippa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-2542f87d97097d83e4fb432444c2531e56c787cf87a4c5067f8c45135fce8c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Antibodies, Neoplasm - genetics</topic><topic>Antibodies, Neoplasm - metabolism</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Cervical cancer</topic><topic>Female</topic><topic>Hematology, Oncology, and Palliative Medicine</topic><topic>Humans</topic><topic>Kaplan-Meier Estimate</topic><topic>Middle Aged</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Obstetrics and Gynecology</topic><topic>Prognostic biomarkers</topic><topic>Proteomics</topic><topic>Reverse phase protein array</topic><topic>Risk Factors</topic><topic>Survival risk</topic><topic>The Cancer Genome Atlas (TCGA)</topic><topic>Uterine Cervical Neoplasms - genetics</topic><topic>Uterine Cervical Neoplasms - immunology</topic><topic>Uterine Cervical Neoplasms - mortality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rader, Janet S</creatorcontrib><creatorcontrib>Pan, Amy</creatorcontrib><creatorcontrib>Corbin, Bradley</creatorcontrib><creatorcontrib>Iden, Marissa</creatorcontrib><creatorcontrib>Lu, Yiling</creatorcontrib><creatorcontrib>Vellano, Christopher P</creatorcontrib><creatorcontrib>Akbani, Rehan</creatorcontrib><creatorcontrib>Mills, Gordon B</creatorcontrib><creatorcontrib>Simpson, Pippa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gynecologic oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rader, Janet S</au><au>Pan, Amy</au><au>Corbin, Bradley</au><au>Iden, Marissa</au><au>Lu, Yiling</au><au>Vellano, Christopher P</au><au>Akbani, Rehan</au><au>Mills, Gordon B</au><au>Simpson, Pippa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and validation of a prognostic proteomic signature for cervical cancer</atitle><jtitle>Gynecologic oncology</jtitle><addtitle>Gynecol Oncol</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>155</volume><issue>2</issue><spage>324</spage><epage>330</epage><pages>324-330</pages><issn>0090-8258</issn><eissn>1095-6859</eissn><abstract>AbstractObjectiveTo date, The Cancer Genome Atlas (TCGA) has provided the most extensive molecular characterization of invasive cervical cancer (ICC). Analysis of reverse phase protein array (RPPA) data from TCGA samples showed that cervical cancers could be stratified into 3 clusters exhibiting significant differences in survival outcome: hormone, EMT, and PI3K/AKT. The goals of the current study were to: 1) validate the TCGA RPPA results in an independent cohort of ICC patients and 2) to develop and validate an algorithm encompassing a small antibody set for clinical utility. MethodsSubjects consisted of 2 ICC patient cohorts with accompanying RPPA and clinical-pathologic data: 155 samples from TCGA (TCGA-155) and 61 additional, unique samples (MCW-61). Using data from 173 common RPPA antibodies, we replicated Silhouette clustering analysis in both ICC cohorts. Further, an index score for each patient was calculated from the survival-associated antibodies (SAAs) identified using Random survival forests (RSF) and the Cox proportional hazard regression model. Kaplan-Meier survival analysis and the log-rank test were performed to assess and compare cluster or risk group survival outcome. ResultsIn addition to validating the prognostic ability of the proteomic clusters reported by TCGA, we developed an algorithm based on 22 unique antibodies (SAAs) that stratified women with ICC into low-, medium-, or high-risk survival groups. ConclusionsWe provide a signature of 22 antibodies which accurately predicted survival outcome in 2 separate groups of ICC patients. Future studies examining these candidate biomarkers in additional ICC cohorts is warranted to fully determine their clinical potential.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31477280</pmid><doi>10.1016/j.ygyno.2019.08.021</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-8258
ispartof Gynecologic oncology, 2019-11, Vol.155 (2), p.324-330
issn 0090-8258
1095-6859
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6825895
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Antibodies, Neoplasm - genetics
Antibodies, Neoplasm - metabolism
Biomarkers, Tumor - metabolism
Cervical cancer
Female
Hematology, Oncology, and Palliative Medicine
Humans
Kaplan-Meier Estimate
Middle Aged
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Obstetrics and Gynecology
Prognostic biomarkers
Proteomics
Reverse phase protein array
Risk Factors
Survival risk
The Cancer Genome Atlas (TCGA)
Uterine Cervical Neoplasms - genetics
Uterine Cervical Neoplasms - immunology
Uterine Cervical Neoplasms - mortality
title Identification and validation of a prognostic proteomic signature for cervical cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20validation%20of%20a%20prognostic%20proteomic%20signature%20for%20cervical%20cancer&rft.jtitle=Gynecologic%20oncology&rft.au=Rader,%20Janet%20S&rft.date=2019-11-01&rft.volume=155&rft.issue=2&rft.spage=324&rft.epage=330&rft.pages=324-330&rft.issn=0090-8258&rft.eissn=1095-6859&rft_id=info:doi/10.1016/j.ygyno.2019.08.021&rft_dat=%3Cproquest_pubme%3E2283999799%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283999799&rft_id=info:pmid/31477280&rft_els_id=S0090825819314738&rfr_iscdi=true