Identification and validation of a prognostic proteomic signature for cervical cancer
AbstractObjectiveTo date, The Cancer Genome Atlas (TCGA) has provided the most extensive molecular characterization of invasive cervical cancer (ICC). Analysis of reverse phase protein array (RPPA) data from TCGA samples showed that cervical cancers could be stratified into 3 clusters exhibiting sig...
Gespeichert in:
Veröffentlicht in: | Gynecologic oncology 2019-11, Vol.155 (2), p.324-330 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 2 |
container_start_page | 324 |
container_title | Gynecologic oncology |
container_volume | 155 |
creator | Rader, Janet S Pan, Amy Corbin, Bradley Iden, Marissa Lu, Yiling Vellano, Christopher P Akbani, Rehan Mills, Gordon B Simpson, Pippa |
description | AbstractObjectiveTo date, The Cancer Genome Atlas (TCGA) has provided the most extensive molecular characterization of invasive cervical cancer (ICC). Analysis of reverse phase protein array (RPPA) data from TCGA samples showed that cervical cancers could be stratified into 3 clusters exhibiting significant differences in survival outcome: hormone, EMT, and PI3K/AKT. The goals of the current study were to: 1) validate the TCGA RPPA results in an independent cohort of ICC patients and 2) to develop and validate an algorithm encompassing a small antibody set for clinical utility. MethodsSubjects consisted of 2 ICC patient cohorts with accompanying RPPA and clinical-pathologic data: 155 samples from TCGA (TCGA-155) and 61 additional, unique samples (MCW-61). Using data from 173 common RPPA antibodies, we replicated Silhouette clustering analysis in both ICC cohorts. Further, an index score for each patient was calculated from the survival-associated antibodies (SAAs) identified using Random survival forests (RSF) and the Cox proportional hazard regression model. Kaplan-Meier survival analysis and the log-rank test were performed to assess and compare cluster or risk group survival outcome. ResultsIn addition to validating the prognostic ability of the proteomic clusters reported by TCGA, we developed an algorithm based on 22 unique antibodies (SAAs) that stratified women with ICC into low-, medium-, or high-risk survival groups. ConclusionsWe provide a signature of 22 antibodies which accurately predicted survival outcome in 2 separate groups of ICC patients. Future studies examining these candidate biomarkers in additional ICC cohorts is warranted to fully determine their clinical potential. |
doi_str_mv | 10.1016/j.ygyno.2019.08.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6825895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0090825819314738</els_id><sourcerecordid>2283999799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-2542f87d97097d83e4fb432444c2531e56c787cf87a4c5067f8c45135fce8c203</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi1ERbeFX4CEcuSSMP5K7AOVUAWlUqUeSs-W60wWL1l7sZOV9t_jsKUCLj15LL_zzsdjQt5SaCjQ9sOmOawPITYMqG5ANcDoC7KioGXdKqlfkhWAhloxqU7JWc4bAOBA2StyyqnoOqZgRe6vewyTH7yzk4-hsqGv9nb0_fEah8pWuxTXIebJuyWcMG5LlP062GlOWA0xVQ7TvliMlbOhxK_JyWDHjG8ez3Ny_-Xzt8uv9c3t1fXlp5vaSSqmmknBBtX1ugPd9YqjGB4EZ0IIxySnKFvXqc4ViRVOQtsNyglJuRwcKseAn5OLo-9ufthi78ooyY5ml_zWpoOJ1pt_X4L_btZxb9plK1oWg_ePBin-nDFPZuuzw3G0AeOcDWOKa607rYuUH6UuxZwTDk9lKJgFiNmY30DMAsSAMgVIyXr3d4dPOX8IFMHHowDLnvYek8nOY1li7xO6yfTRP1Pg4r98N_qwsPiBB8ybOKdQEBhqMjNg7pY_sQxP9dICV_wXvra0Iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283999799</pqid></control><display><type>article</type><title>Identification and validation of a prognostic proteomic signature for cervical cancer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rader, Janet S ; Pan, Amy ; Corbin, Bradley ; Iden, Marissa ; Lu, Yiling ; Vellano, Christopher P ; Akbani, Rehan ; Mills, Gordon B ; Simpson, Pippa</creator><creatorcontrib>Rader, Janet S ; Pan, Amy ; Corbin, Bradley ; Iden, Marissa ; Lu, Yiling ; Vellano, Christopher P ; Akbani, Rehan ; Mills, Gordon B ; Simpson, Pippa</creatorcontrib><description>AbstractObjectiveTo date, The Cancer Genome Atlas (TCGA) has provided the most extensive molecular characterization of invasive cervical cancer (ICC). Analysis of reverse phase protein array (RPPA) data from TCGA samples showed that cervical cancers could be stratified into 3 clusters exhibiting significant differences in survival outcome: hormone, EMT, and PI3K/AKT. The goals of the current study were to: 1) validate the TCGA RPPA results in an independent cohort of ICC patients and 2) to develop and validate an algorithm encompassing a small antibody set for clinical utility. MethodsSubjects consisted of 2 ICC patient cohorts with accompanying RPPA and clinical-pathologic data: 155 samples from TCGA (TCGA-155) and 61 additional, unique samples (MCW-61). Using data from 173 common RPPA antibodies, we replicated Silhouette clustering analysis in both ICC cohorts. Further, an index score for each patient was calculated from the survival-associated antibodies (SAAs) identified using Random survival forests (RSF) and the Cox proportional hazard regression model. Kaplan-Meier survival analysis and the log-rank test were performed to assess and compare cluster or risk group survival outcome. ResultsIn addition to validating the prognostic ability of the proteomic clusters reported by TCGA, we developed an algorithm based on 22 unique antibodies (SAAs) that stratified women with ICC into low-, medium-, or high-risk survival groups. ConclusionsWe provide a signature of 22 antibodies which accurately predicted survival outcome in 2 separate groups of ICC patients. Future studies examining these candidate biomarkers in additional ICC cohorts is warranted to fully determine their clinical potential.</description><identifier>ISSN: 0090-8258</identifier><identifier>EISSN: 1095-6859</identifier><identifier>DOI: 10.1016/j.ygyno.2019.08.021</identifier><identifier>PMID: 31477280</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Antibodies, Neoplasm - genetics ; Antibodies, Neoplasm - metabolism ; Biomarkers, Tumor - metabolism ; Cervical cancer ; Female ; Hematology, Oncology, and Palliative Medicine ; Humans ; Kaplan-Meier Estimate ; Middle Aged ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Obstetrics and Gynecology ; Prognostic biomarkers ; Proteomics ; Reverse phase protein array ; Risk Factors ; Survival risk ; The Cancer Genome Atlas (TCGA) ; Uterine Cervical Neoplasms - genetics ; Uterine Cervical Neoplasms - immunology ; Uterine Cervical Neoplasms - mortality</subject><ispartof>Gynecologic oncology, 2019-11, Vol.155 (2), p.324-330</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-2542f87d97097d83e4fb432444c2531e56c787cf87a4c5067f8c45135fce8c203</citedby><cites>FETCH-LOGICAL-c514t-2542f87d97097d83e4fb432444c2531e56c787cf87a4c5067f8c45135fce8c203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ygyno.2019.08.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31477280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rader, Janet S</creatorcontrib><creatorcontrib>Pan, Amy</creatorcontrib><creatorcontrib>Corbin, Bradley</creatorcontrib><creatorcontrib>Iden, Marissa</creatorcontrib><creatorcontrib>Lu, Yiling</creatorcontrib><creatorcontrib>Vellano, Christopher P</creatorcontrib><creatorcontrib>Akbani, Rehan</creatorcontrib><creatorcontrib>Mills, Gordon B</creatorcontrib><creatorcontrib>Simpson, Pippa</creatorcontrib><title>Identification and validation of a prognostic proteomic signature for cervical cancer</title><title>Gynecologic oncology</title><addtitle>Gynecol Oncol</addtitle><description>AbstractObjectiveTo date, The Cancer Genome Atlas (TCGA) has provided the most extensive molecular characterization of invasive cervical cancer (ICC). Analysis of reverse phase protein array (RPPA) data from TCGA samples showed that cervical cancers could be stratified into 3 clusters exhibiting significant differences in survival outcome: hormone, EMT, and PI3K/AKT. The goals of the current study were to: 1) validate the TCGA RPPA results in an independent cohort of ICC patients and 2) to develop and validate an algorithm encompassing a small antibody set for clinical utility. MethodsSubjects consisted of 2 ICC patient cohorts with accompanying RPPA and clinical-pathologic data: 155 samples from TCGA (TCGA-155) and 61 additional, unique samples (MCW-61). Using data from 173 common RPPA antibodies, we replicated Silhouette clustering analysis in both ICC cohorts. Further, an index score for each patient was calculated from the survival-associated antibodies (SAAs) identified using Random survival forests (RSF) and the Cox proportional hazard regression model. Kaplan-Meier survival analysis and the log-rank test were performed to assess and compare cluster or risk group survival outcome. ResultsIn addition to validating the prognostic ability of the proteomic clusters reported by TCGA, we developed an algorithm based on 22 unique antibodies (SAAs) that stratified women with ICC into low-, medium-, or high-risk survival groups. ConclusionsWe provide a signature of 22 antibodies which accurately predicted survival outcome in 2 separate groups of ICC patients. Future studies examining these candidate biomarkers in additional ICC cohorts is warranted to fully determine their clinical potential.</description><subject>Adult</subject><subject>Antibodies, Neoplasm - genetics</subject><subject>Antibodies, Neoplasm - metabolism</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Cervical cancer</subject><subject>Female</subject><subject>Hematology, Oncology, and Palliative Medicine</subject><subject>Humans</subject><subject>Kaplan-Meier Estimate</subject><subject>Middle Aged</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Obstetrics and Gynecology</subject><subject>Prognostic biomarkers</subject><subject>Proteomics</subject><subject>Reverse phase protein array</subject><subject>Risk Factors</subject><subject>Survival risk</subject><subject>The Cancer Genome Atlas (TCGA)</subject><subject>Uterine Cervical Neoplasms - genetics</subject><subject>Uterine Cervical Neoplasms - immunology</subject><subject>Uterine Cervical Neoplasms - mortality</subject><issn>0090-8258</issn><issn>1095-6859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhi1ERbeFX4CEcuSSMP5K7AOVUAWlUqUeSs-W60wWL1l7sZOV9t_jsKUCLj15LL_zzsdjQt5SaCjQ9sOmOawPITYMqG5ANcDoC7KioGXdKqlfkhWAhloxqU7JWc4bAOBA2StyyqnoOqZgRe6vewyTH7yzk4-hsqGv9nb0_fEah8pWuxTXIebJuyWcMG5LlP062GlOWA0xVQ7TvliMlbOhxK_JyWDHjG8ez3Ny_-Xzt8uv9c3t1fXlp5vaSSqmmknBBtX1ugPd9YqjGB4EZ0IIxySnKFvXqc4ViRVOQtsNyglJuRwcKseAn5OLo-9ufthi78ooyY5ml_zWpoOJ1pt_X4L_btZxb9plK1oWg_ePBin-nDFPZuuzw3G0AeOcDWOKa607rYuUH6UuxZwTDk9lKJgFiNmY30DMAsSAMgVIyXr3d4dPOX8IFMHHowDLnvYek8nOY1li7xO6yfTRP1Pg4r98N_qwsPiBB8ybOKdQEBhqMjNg7pY_sQxP9dICV_wXvra0Iw</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Rader, Janet S</creator><creator>Pan, Amy</creator><creator>Corbin, Bradley</creator><creator>Iden, Marissa</creator><creator>Lu, Yiling</creator><creator>Vellano, Christopher P</creator><creator>Akbani, Rehan</creator><creator>Mills, Gordon B</creator><creator>Simpson, Pippa</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191101</creationdate><title>Identification and validation of a prognostic proteomic signature for cervical cancer</title><author>Rader, Janet S ; Pan, Amy ; Corbin, Bradley ; Iden, Marissa ; Lu, Yiling ; Vellano, Christopher P ; Akbani, Rehan ; Mills, Gordon B ; Simpson, Pippa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-2542f87d97097d83e4fb432444c2531e56c787cf87a4c5067f8c45135fce8c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Antibodies, Neoplasm - genetics</topic><topic>Antibodies, Neoplasm - metabolism</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Cervical cancer</topic><topic>Female</topic><topic>Hematology, Oncology, and Palliative Medicine</topic><topic>Humans</topic><topic>Kaplan-Meier Estimate</topic><topic>Middle Aged</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Obstetrics and Gynecology</topic><topic>Prognostic biomarkers</topic><topic>Proteomics</topic><topic>Reverse phase protein array</topic><topic>Risk Factors</topic><topic>Survival risk</topic><topic>The Cancer Genome Atlas (TCGA)</topic><topic>Uterine Cervical Neoplasms - genetics</topic><topic>Uterine Cervical Neoplasms - immunology</topic><topic>Uterine Cervical Neoplasms - mortality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rader, Janet S</creatorcontrib><creatorcontrib>Pan, Amy</creatorcontrib><creatorcontrib>Corbin, Bradley</creatorcontrib><creatorcontrib>Iden, Marissa</creatorcontrib><creatorcontrib>Lu, Yiling</creatorcontrib><creatorcontrib>Vellano, Christopher P</creatorcontrib><creatorcontrib>Akbani, Rehan</creatorcontrib><creatorcontrib>Mills, Gordon B</creatorcontrib><creatorcontrib>Simpson, Pippa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gynecologic oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rader, Janet S</au><au>Pan, Amy</au><au>Corbin, Bradley</au><au>Iden, Marissa</au><au>Lu, Yiling</au><au>Vellano, Christopher P</au><au>Akbani, Rehan</au><au>Mills, Gordon B</au><au>Simpson, Pippa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and validation of a prognostic proteomic signature for cervical cancer</atitle><jtitle>Gynecologic oncology</jtitle><addtitle>Gynecol Oncol</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>155</volume><issue>2</issue><spage>324</spage><epage>330</epage><pages>324-330</pages><issn>0090-8258</issn><eissn>1095-6859</eissn><abstract>AbstractObjectiveTo date, The Cancer Genome Atlas (TCGA) has provided the most extensive molecular characterization of invasive cervical cancer (ICC). Analysis of reverse phase protein array (RPPA) data from TCGA samples showed that cervical cancers could be stratified into 3 clusters exhibiting significant differences in survival outcome: hormone, EMT, and PI3K/AKT. The goals of the current study were to: 1) validate the TCGA RPPA results in an independent cohort of ICC patients and 2) to develop and validate an algorithm encompassing a small antibody set for clinical utility. MethodsSubjects consisted of 2 ICC patient cohorts with accompanying RPPA and clinical-pathologic data: 155 samples from TCGA (TCGA-155) and 61 additional, unique samples (MCW-61). Using data from 173 common RPPA antibodies, we replicated Silhouette clustering analysis in both ICC cohorts. Further, an index score for each patient was calculated from the survival-associated antibodies (SAAs) identified using Random survival forests (RSF) and the Cox proportional hazard regression model. Kaplan-Meier survival analysis and the log-rank test were performed to assess and compare cluster or risk group survival outcome. ResultsIn addition to validating the prognostic ability of the proteomic clusters reported by TCGA, we developed an algorithm based on 22 unique antibodies (SAAs) that stratified women with ICC into low-, medium-, or high-risk survival groups. ConclusionsWe provide a signature of 22 antibodies which accurately predicted survival outcome in 2 separate groups of ICC patients. Future studies examining these candidate biomarkers in additional ICC cohorts is warranted to fully determine their clinical potential.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31477280</pmid><doi>10.1016/j.ygyno.2019.08.021</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-8258 |
ispartof | Gynecologic oncology, 2019-11, Vol.155 (2), p.324-330 |
issn | 0090-8258 1095-6859 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6825895 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult Antibodies, Neoplasm - genetics Antibodies, Neoplasm - metabolism Biomarkers, Tumor - metabolism Cervical cancer Female Hematology, Oncology, and Palliative Medicine Humans Kaplan-Meier Estimate Middle Aged Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Obstetrics and Gynecology Prognostic biomarkers Proteomics Reverse phase protein array Risk Factors Survival risk The Cancer Genome Atlas (TCGA) Uterine Cervical Neoplasms - genetics Uterine Cervical Neoplasms - immunology Uterine Cervical Neoplasms - mortality |
title | Identification and validation of a prognostic proteomic signature for cervical cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20validation%20of%20a%20prognostic%20proteomic%20signature%20for%20cervical%20cancer&rft.jtitle=Gynecologic%20oncology&rft.au=Rader,%20Janet%20S&rft.date=2019-11-01&rft.volume=155&rft.issue=2&rft.spage=324&rft.epage=330&rft.pages=324-330&rft.issn=0090-8258&rft.eissn=1095-6859&rft_id=info:doi/10.1016/j.ygyno.2019.08.021&rft_dat=%3Cproquest_pubme%3E2283999799%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283999799&rft_id=info:pmid/31477280&rft_els_id=S0090825819314738&rfr_iscdi=true |