Glutaminolysis‐related genes determine sensitivity to xCT‐targeted therapy in head and neck squamous cell carcinoma

Targeting the function of membrane transporters in cancer stemlike cells is a potential new therapeutic approach. Cystine‐glutamate antiporter xCT expressed in CD44 variant (CD44v)‐expressing cancer cells contributes to the resistance to oxidative stress as well as cancer therapy through promoting g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2019-11, Vol.110 (11), p.3453-3463
Hauptverfasser: Okazaki, Shogo, Umene, Kiyoko, Yamasaki, Juntaro, Suina, Kentaro, Otsuki, Yuji, Yoshikawa, Momoko, Minami, Yushi, Masuko, Takashi, Kawaguchi, Sho, Nakayama, Hideki, Banno, Kouji, Aoki, Daisuke, Saya, Hideyuki, Nagano, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
R&D
xCT
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3463
container_issue 11
container_start_page 3453
container_title Cancer science
container_volume 110
creator Okazaki, Shogo
Umene, Kiyoko
Yamasaki, Juntaro
Suina, Kentaro
Otsuki, Yuji
Yoshikawa, Momoko
Minami, Yushi
Masuko, Takashi
Kawaguchi, Sho
Nakayama, Hideki
Banno, Kouji
Aoki, Daisuke
Saya, Hideyuki
Nagano, Osamu
description Targeting the function of membrane transporters in cancer stemlike cells is a potential new therapeutic approach. Cystine‐glutamate antiporter xCT expressed in CD44 variant (CD44v)‐expressing cancer cells contributes to the resistance to oxidative stress as well as cancer therapy through promoting glutathione (GSH)‐mediated antioxidant defense. Amino acid transport by xCT might, thus, be a promising target for cancer treatment, whereas the determination factors for cancer cell sensitivity to xCT‐targeted therapy remain unclear. Here, we demonstrate that high expression of xCT and glutamine transporter ASCT2 is correlated with undifferentiated status and diminished along with cell differentiation in head and neck squamous cell carcinoma (HNSCC). The cytotoxicity of the xCT inhibitor sulfasalazine relies on ASCT2‐dependent glutamine uptake and glutamate dehydrogenase (GLUD)‐mediated α‐ketoglutarate (α‐KG) production. Metabolome analysis revealed that sulfasalazine treatment triggers the increase of glutamate‐derived tricarboxylic acid cycle intermediate α‐KG, in addition to the decrease of cysteine and GSH content. Furthermore, ablation of GLUD markedly reduced the sulfasalazine cytotoxicity in CD44v‐expressing stemlike HNSCC cells. Thus, xCT inhibition by sulfasalazine leads to the impairment of GSH synthesis and enhancement of mitochondrial metabolism, leading to reactive oxygen species (ROS) generation and, thereby, triggers oxidative damage. Our findings establish a rationale for the use of glutamine metabolism (glutaminolysis)‐related genes, including ASCT2 and GLUD, as biomarkers to predict the efficacy of xCT‐targeted therapy for heterogeneous HNSCC tumors. Competition exists between xCT‐mediated cystine uptake and GLUD‐mediated alpha‐KG generation.
doi_str_mv 10.1111/cas.14182
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6825010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311133659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5332-822b3416ee922e9eee135f545031eb5eca46d0c3183491cc91c83ebdb43f73a83</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EoqVw4AWQJS7lkNb2ONnkglStoCBV4kA5WxNndtclcba205Ibj8Az8iR4u6UCJEayxtJ8-j2_f8ZeSnEic51ajCdSy1o9YocSdFMshKge390XRSNAHbBnMV4JAZVu9FN2AFJr3Sg4ZLfn_ZRwcH7s5-jiz-8_AvWYqONr8hR5R4lCHhOP5KNL7salmaeRf1teZjhhWNOOThsKuJ2583xD2HH0Hfdkv_J4PeEwTpFb6ntuMdj81oDP2ZMV9pFe3Pcj9uX9u8vlh-Li0_nH5dlFYUsAVdRKtaBlRdQoRQ0RSShXpS4FSGpLsqirTliQdbYtrc2nBmq7VsNqAVjDEXu7191O7UCdJZ8C9mYb3IBhNiM68_fEu41ZjzemqlUppMgCx_cCYbyeKCYzuLjzgp6yLaNUI-r8q1Jn9PU_6NU4BZ_tGQU5J4CqbDL1Zk_ZMMYYaPWwjBRmF6fJcZq7ODP76s_tH8jf-WXgdA_cup7m_yuZ5dnnveQvFBGt7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311133659</pqid></control><display><type>article</type><title>Glutaminolysis‐related genes determine sensitivity to xCT‐targeted therapy in head and neck squamous cell carcinoma</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Okazaki, Shogo ; Umene, Kiyoko ; Yamasaki, Juntaro ; Suina, Kentaro ; Otsuki, Yuji ; Yoshikawa, Momoko ; Minami, Yushi ; Masuko, Takashi ; Kawaguchi, Sho ; Nakayama, Hideki ; Banno, Kouji ; Aoki, Daisuke ; Saya, Hideyuki ; Nagano, Osamu</creator><creatorcontrib>Okazaki, Shogo ; Umene, Kiyoko ; Yamasaki, Juntaro ; Suina, Kentaro ; Otsuki, Yuji ; Yoshikawa, Momoko ; Minami, Yushi ; Masuko, Takashi ; Kawaguchi, Sho ; Nakayama, Hideki ; Banno, Kouji ; Aoki, Daisuke ; Saya, Hideyuki ; Nagano, Osamu</creatorcontrib><description>Targeting the function of membrane transporters in cancer stemlike cells is a potential new therapeutic approach. Cystine‐glutamate antiporter xCT expressed in CD44 variant (CD44v)‐expressing cancer cells contributes to the resistance to oxidative stress as well as cancer therapy through promoting glutathione (GSH)‐mediated antioxidant defense. Amino acid transport by xCT might, thus, be a promising target for cancer treatment, whereas the determination factors for cancer cell sensitivity to xCT‐targeted therapy remain unclear. Here, we demonstrate that high expression of xCT and glutamine transporter ASCT2 is correlated with undifferentiated status and diminished along with cell differentiation in head and neck squamous cell carcinoma (HNSCC). The cytotoxicity of the xCT inhibitor sulfasalazine relies on ASCT2‐dependent glutamine uptake and glutamate dehydrogenase (GLUD)‐mediated α‐ketoglutarate (α‐KG) production. Metabolome analysis revealed that sulfasalazine treatment triggers the increase of glutamate‐derived tricarboxylic acid cycle intermediate α‐KG, in addition to the decrease of cysteine and GSH content. Furthermore, ablation of GLUD markedly reduced the sulfasalazine cytotoxicity in CD44v‐expressing stemlike HNSCC cells. Thus, xCT inhibition by sulfasalazine leads to the impairment of GSH synthesis and enhancement of mitochondrial metabolism, leading to reactive oxygen species (ROS) generation and, thereby, triggers oxidative damage. Our findings establish a rationale for the use of glutamine metabolism (glutaminolysis)‐related genes, including ASCT2 and GLUD, as biomarkers to predict the efficacy of xCT‐targeted therapy for heterogeneous HNSCC tumors. Competition exists between xCT‐mediated cystine uptake and GLUD‐mediated alpha‐KG generation.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.14182</identifier><identifier>PMID: 31444923</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Acidification ; Amino Acid Transport System ASC - genetics ; Amino Acid Transport System y+ - antagonists &amp; inhibitors ; Amino Acid Transport System y+ - metabolism ; Amino acids ; Animals ; Anti-Inflammatory Agents, Non-Steroidal - pharmacology ; Antineoplastic Agents - pharmacology ; Antioxidants ; Apoptosis ; ASCT2 ; Cancer ; Capillary electrophoresis ; CD44 antigen ; CD44 variant ; Cell Adhesion ; Cell Differentiation ; Cell Line, Tumor ; Cisplatin - pharmacology ; Cytotoxicity ; Dehydrogenases ; Genes ; Glutamate dehydrogenase ; Glutamate Dehydrogenase - metabolism ; Glutamine ; Glutamine - metabolism ; Glutathione ; Glutathione - metabolism ; Head &amp; neck cancer ; head and neck cancer ; Head and Neck Neoplasms - drug therapy ; Head and Neck Neoplasms - genetics ; Head and Neck Neoplasms - metabolism ; Head and Neck Neoplasms - pathology ; Homeostasis ; Humans ; Hyaluronan Receptors - analysis ; Hyaluronan Receptors - metabolism ; Infections ; Ketoglutaric acid ; Ketoglutaric Acids - metabolism ; Mass spectrometry ; Medical prognosis ; Medical research ; Metabolism ; Metabolome ; Mice ; Mice, Nude ; Minor Histocompatibility Antigens - genetics ; Mitochondria ; Mitochondria - metabolism ; Molecular Targeted Therapy - methods ; Neoplastic Stem Cells - metabolism ; Original ; Oxidation-Reduction ; Oxidative Stress ; Phosphorylation ; Polyclonal antibodies ; R&amp;D ; Reactive oxygen species ; Research &amp; development ; Respiration ; RNA, Messenger - metabolism ; Scientific imaging ; Squamous cell carcinoma ; Squamous Cell Carcinoma of Head and Neck - drug therapy ; Squamous Cell Carcinoma of Head and Neck - genetics ; Squamous Cell Carcinoma of Head and Neck - metabolism ; Squamous Cell Carcinoma of Head and Neck - pathology ; Sulfasalazine ; Sulfasalazine - pharmacology ; Tricarboxylic acid cycle ; Tumors ; xCT</subject><ispartof>Cancer science, 2019-11, Vol.110 (11), p.3453-3463</ispartof><rights>2019 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2019 The Authors. Cancer Science published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5332-822b3416ee922e9eee135f545031eb5eca46d0c3183491cc91c83ebdb43f73a83</citedby><cites>FETCH-LOGICAL-c5332-822b3416ee922e9eee135f545031eb5eca46d0c3183491cc91c83ebdb43f73a83</cites><orcidid>0000-0002-2410-2007 ; 0000-0002-7630-142X ; 0000-0002-3244-0268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825010/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825010/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31444923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okazaki, Shogo</creatorcontrib><creatorcontrib>Umene, Kiyoko</creatorcontrib><creatorcontrib>Yamasaki, Juntaro</creatorcontrib><creatorcontrib>Suina, Kentaro</creatorcontrib><creatorcontrib>Otsuki, Yuji</creatorcontrib><creatorcontrib>Yoshikawa, Momoko</creatorcontrib><creatorcontrib>Minami, Yushi</creatorcontrib><creatorcontrib>Masuko, Takashi</creatorcontrib><creatorcontrib>Kawaguchi, Sho</creatorcontrib><creatorcontrib>Nakayama, Hideki</creatorcontrib><creatorcontrib>Banno, Kouji</creatorcontrib><creatorcontrib>Aoki, Daisuke</creatorcontrib><creatorcontrib>Saya, Hideyuki</creatorcontrib><creatorcontrib>Nagano, Osamu</creatorcontrib><title>Glutaminolysis‐related genes determine sensitivity to xCT‐targeted therapy in head and neck squamous cell carcinoma</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Targeting the function of membrane transporters in cancer stemlike cells is a potential new therapeutic approach. Cystine‐glutamate antiporter xCT expressed in CD44 variant (CD44v)‐expressing cancer cells contributes to the resistance to oxidative stress as well as cancer therapy through promoting glutathione (GSH)‐mediated antioxidant defense. Amino acid transport by xCT might, thus, be a promising target for cancer treatment, whereas the determination factors for cancer cell sensitivity to xCT‐targeted therapy remain unclear. Here, we demonstrate that high expression of xCT and glutamine transporter ASCT2 is correlated with undifferentiated status and diminished along with cell differentiation in head and neck squamous cell carcinoma (HNSCC). The cytotoxicity of the xCT inhibitor sulfasalazine relies on ASCT2‐dependent glutamine uptake and glutamate dehydrogenase (GLUD)‐mediated α‐ketoglutarate (α‐KG) production. Metabolome analysis revealed that sulfasalazine treatment triggers the increase of glutamate‐derived tricarboxylic acid cycle intermediate α‐KG, in addition to the decrease of cysteine and GSH content. Furthermore, ablation of GLUD markedly reduced the sulfasalazine cytotoxicity in CD44v‐expressing stemlike HNSCC cells. Thus, xCT inhibition by sulfasalazine leads to the impairment of GSH synthesis and enhancement of mitochondrial metabolism, leading to reactive oxygen species (ROS) generation and, thereby, triggers oxidative damage. Our findings establish a rationale for the use of glutamine metabolism (glutaminolysis)‐related genes, including ASCT2 and GLUD, as biomarkers to predict the efficacy of xCT‐targeted therapy for heterogeneous HNSCC tumors. Competition exists between xCT‐mediated cystine uptake and GLUD‐mediated alpha‐KG generation.</description><subject>Acidification</subject><subject>Amino Acid Transport System ASC - genetics</subject><subject>Amino Acid Transport System y+ - antagonists &amp; inhibitors</subject><subject>Amino Acid Transport System y+ - metabolism</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - pharmacology</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>ASCT2</subject><subject>Cancer</subject><subject>Capillary electrophoresis</subject><subject>CD44 antigen</subject><subject>CD44 variant</subject><subject>Cell Adhesion</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Cisplatin - pharmacology</subject><subject>Cytotoxicity</subject><subject>Dehydrogenases</subject><subject>Genes</subject><subject>Glutamate dehydrogenase</subject><subject>Glutamate Dehydrogenase - metabolism</subject><subject>Glutamine</subject><subject>Glutamine - metabolism</subject><subject>Glutathione</subject><subject>Glutathione - metabolism</subject><subject>Head &amp; neck cancer</subject><subject>head and neck cancer</subject><subject>Head and Neck Neoplasms - drug therapy</subject><subject>Head and Neck Neoplasms - genetics</subject><subject>Head and Neck Neoplasms - metabolism</subject><subject>Head and Neck Neoplasms - pathology</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hyaluronan Receptors - analysis</subject><subject>Hyaluronan Receptors - metabolism</subject><subject>Infections</subject><subject>Ketoglutaric acid</subject><subject>Ketoglutaric Acids - metabolism</subject><subject>Mass spectrometry</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Metabolism</subject><subject>Metabolome</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Minor Histocompatibility Antigens - genetics</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Molecular Targeted Therapy - methods</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Original</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress</subject><subject>Phosphorylation</subject><subject>Polyclonal antibodies</subject><subject>R&amp;D</subject><subject>Reactive oxygen species</subject><subject>Research &amp; development</subject><subject>Respiration</subject><subject>RNA, Messenger - metabolism</subject><subject>Scientific imaging</subject><subject>Squamous cell carcinoma</subject><subject>Squamous Cell Carcinoma of Head and Neck - drug therapy</subject><subject>Squamous Cell Carcinoma of Head and Neck - genetics</subject><subject>Squamous Cell Carcinoma of Head and Neck - metabolism</subject><subject>Squamous Cell Carcinoma of Head and Neck - pathology</subject><subject>Sulfasalazine</subject><subject>Sulfasalazine - pharmacology</subject><subject>Tricarboxylic acid cycle</subject><subject>Tumors</subject><subject>xCT</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFu1DAQhi0EoqVw4AWQJS7lkNb2ONnkglStoCBV4kA5WxNndtclcba205Ibj8Az8iR4u6UCJEayxtJ8-j2_f8ZeSnEic51ajCdSy1o9YocSdFMshKge390XRSNAHbBnMV4JAZVu9FN2AFJr3Sg4ZLfn_ZRwcH7s5-jiz-8_AvWYqONr8hR5R4lCHhOP5KNL7salmaeRf1teZjhhWNOOThsKuJ2583xD2HH0Hfdkv_J4PeEwTpFb6ntuMdj81oDP2ZMV9pFe3Pcj9uX9u8vlh-Li0_nH5dlFYUsAVdRKtaBlRdQoRQ0RSShXpS4FSGpLsqirTliQdbYtrc2nBmq7VsNqAVjDEXu7191O7UCdJZ8C9mYb3IBhNiM68_fEu41ZjzemqlUppMgCx_cCYbyeKCYzuLjzgp6yLaNUI-r8q1Jn9PU_6NU4BZ_tGQU5J4CqbDL1Zk_ZMMYYaPWwjBRmF6fJcZq7ODP76s_tH8jf-WXgdA_cup7m_yuZ5dnnveQvFBGt7A</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Okazaki, Shogo</creator><creator>Umene, Kiyoko</creator><creator>Yamasaki, Juntaro</creator><creator>Suina, Kentaro</creator><creator>Otsuki, Yuji</creator><creator>Yoshikawa, Momoko</creator><creator>Minami, Yushi</creator><creator>Masuko, Takashi</creator><creator>Kawaguchi, Sho</creator><creator>Nakayama, Hideki</creator><creator>Banno, Kouji</creator><creator>Aoki, Daisuke</creator><creator>Saya, Hideyuki</creator><creator>Nagano, Osamu</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2410-2007</orcidid><orcidid>https://orcid.org/0000-0002-7630-142X</orcidid><orcidid>https://orcid.org/0000-0002-3244-0268</orcidid></search><sort><creationdate>201911</creationdate><title>Glutaminolysis‐related genes determine sensitivity to xCT‐targeted therapy in head and neck squamous cell carcinoma</title><author>Okazaki, Shogo ; Umene, Kiyoko ; Yamasaki, Juntaro ; Suina, Kentaro ; Otsuki, Yuji ; Yoshikawa, Momoko ; Minami, Yushi ; Masuko, Takashi ; Kawaguchi, Sho ; Nakayama, Hideki ; Banno, Kouji ; Aoki, Daisuke ; Saya, Hideyuki ; Nagano, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5332-822b3416ee922e9eee135f545031eb5eca46d0c3183491cc91c83ebdb43f73a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acidification</topic><topic>Amino Acid Transport System ASC - genetics</topic><topic>Amino Acid Transport System y+ - antagonists &amp; inhibitors</topic><topic>Amino Acid Transport System y+ - metabolism</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - pharmacology</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>ASCT2</topic><topic>Cancer</topic><topic>Capillary electrophoresis</topic><topic>CD44 antigen</topic><topic>CD44 variant</topic><topic>Cell Adhesion</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Cisplatin - pharmacology</topic><topic>Cytotoxicity</topic><topic>Dehydrogenases</topic><topic>Genes</topic><topic>Glutamate dehydrogenase</topic><topic>Glutamate Dehydrogenase - metabolism</topic><topic>Glutamine</topic><topic>Glutamine - metabolism</topic><topic>Glutathione</topic><topic>Glutathione - metabolism</topic><topic>Head &amp; neck cancer</topic><topic>head and neck cancer</topic><topic>Head and Neck Neoplasms - drug therapy</topic><topic>Head and Neck Neoplasms - genetics</topic><topic>Head and Neck Neoplasms - metabolism</topic><topic>Head and Neck Neoplasms - pathology</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hyaluronan Receptors - analysis</topic><topic>Hyaluronan Receptors - metabolism</topic><topic>Infections</topic><topic>Ketoglutaric acid</topic><topic>Ketoglutaric Acids - metabolism</topic><topic>Mass spectrometry</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Metabolism</topic><topic>Metabolome</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Minor Histocompatibility Antigens - genetics</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Molecular Targeted Therapy - methods</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Original</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress</topic><topic>Phosphorylation</topic><topic>Polyclonal antibodies</topic><topic>R&amp;D</topic><topic>Reactive oxygen species</topic><topic>Research &amp; development</topic><topic>Respiration</topic><topic>RNA, Messenger - metabolism</topic><topic>Scientific imaging</topic><topic>Squamous cell carcinoma</topic><topic>Squamous Cell Carcinoma of Head and Neck - drug therapy</topic><topic>Squamous Cell Carcinoma of Head and Neck - genetics</topic><topic>Squamous Cell Carcinoma of Head and Neck - metabolism</topic><topic>Squamous Cell Carcinoma of Head and Neck - pathology</topic><topic>Sulfasalazine</topic><topic>Sulfasalazine - pharmacology</topic><topic>Tricarboxylic acid cycle</topic><topic>Tumors</topic><topic>xCT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okazaki, Shogo</creatorcontrib><creatorcontrib>Umene, Kiyoko</creatorcontrib><creatorcontrib>Yamasaki, Juntaro</creatorcontrib><creatorcontrib>Suina, Kentaro</creatorcontrib><creatorcontrib>Otsuki, Yuji</creatorcontrib><creatorcontrib>Yoshikawa, Momoko</creatorcontrib><creatorcontrib>Minami, Yushi</creatorcontrib><creatorcontrib>Masuko, Takashi</creatorcontrib><creatorcontrib>Kawaguchi, Sho</creatorcontrib><creatorcontrib>Nakayama, Hideki</creatorcontrib><creatorcontrib>Banno, Kouji</creatorcontrib><creatorcontrib>Aoki, Daisuke</creatorcontrib><creatorcontrib>Saya, Hideyuki</creatorcontrib><creatorcontrib>Nagano, Osamu</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okazaki, Shogo</au><au>Umene, Kiyoko</au><au>Yamasaki, Juntaro</au><au>Suina, Kentaro</au><au>Otsuki, Yuji</au><au>Yoshikawa, Momoko</au><au>Minami, Yushi</au><au>Masuko, Takashi</au><au>Kawaguchi, Sho</au><au>Nakayama, Hideki</au><au>Banno, Kouji</au><au>Aoki, Daisuke</au><au>Saya, Hideyuki</au><au>Nagano, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glutaminolysis‐related genes determine sensitivity to xCT‐targeted therapy in head and neck squamous cell carcinoma</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2019-11</date><risdate>2019</risdate><volume>110</volume><issue>11</issue><spage>3453</spage><epage>3463</epage><pages>3453-3463</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Targeting the function of membrane transporters in cancer stemlike cells is a potential new therapeutic approach. Cystine‐glutamate antiporter xCT expressed in CD44 variant (CD44v)‐expressing cancer cells contributes to the resistance to oxidative stress as well as cancer therapy through promoting glutathione (GSH)‐mediated antioxidant defense. Amino acid transport by xCT might, thus, be a promising target for cancer treatment, whereas the determination factors for cancer cell sensitivity to xCT‐targeted therapy remain unclear. Here, we demonstrate that high expression of xCT and glutamine transporter ASCT2 is correlated with undifferentiated status and diminished along with cell differentiation in head and neck squamous cell carcinoma (HNSCC). The cytotoxicity of the xCT inhibitor sulfasalazine relies on ASCT2‐dependent glutamine uptake and glutamate dehydrogenase (GLUD)‐mediated α‐ketoglutarate (α‐KG) production. Metabolome analysis revealed that sulfasalazine treatment triggers the increase of glutamate‐derived tricarboxylic acid cycle intermediate α‐KG, in addition to the decrease of cysteine and GSH content. Furthermore, ablation of GLUD markedly reduced the sulfasalazine cytotoxicity in CD44v‐expressing stemlike HNSCC cells. Thus, xCT inhibition by sulfasalazine leads to the impairment of GSH synthesis and enhancement of mitochondrial metabolism, leading to reactive oxygen species (ROS) generation and, thereby, triggers oxidative damage. Our findings establish a rationale for the use of glutamine metabolism (glutaminolysis)‐related genes, including ASCT2 and GLUD, as biomarkers to predict the efficacy of xCT‐targeted therapy for heterogeneous HNSCC tumors. Competition exists between xCT‐mediated cystine uptake and GLUD‐mediated alpha‐KG generation.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31444923</pmid><doi>10.1111/cas.14182</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2410-2007</orcidid><orcidid>https://orcid.org/0000-0002-7630-142X</orcidid><orcidid>https://orcid.org/0000-0002-3244-0268</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-9032
ispartof Cancer science, 2019-11, Vol.110 (11), p.3453-3463
issn 1347-9032
1349-7006
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6825010
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals; PubMed Central
subjects Acidification
Amino Acid Transport System ASC - genetics
Amino Acid Transport System y+ - antagonists & inhibitors
Amino Acid Transport System y+ - metabolism
Amino acids
Animals
Anti-Inflammatory Agents, Non-Steroidal - pharmacology
Antineoplastic Agents - pharmacology
Antioxidants
Apoptosis
ASCT2
Cancer
Capillary electrophoresis
CD44 antigen
CD44 variant
Cell Adhesion
Cell Differentiation
Cell Line, Tumor
Cisplatin - pharmacology
Cytotoxicity
Dehydrogenases
Genes
Glutamate dehydrogenase
Glutamate Dehydrogenase - metabolism
Glutamine
Glutamine - metabolism
Glutathione
Glutathione - metabolism
Head & neck cancer
head and neck cancer
Head and Neck Neoplasms - drug therapy
Head and Neck Neoplasms - genetics
Head and Neck Neoplasms - metabolism
Head and Neck Neoplasms - pathology
Homeostasis
Humans
Hyaluronan Receptors - analysis
Hyaluronan Receptors - metabolism
Infections
Ketoglutaric acid
Ketoglutaric Acids - metabolism
Mass spectrometry
Medical prognosis
Medical research
Metabolism
Metabolome
Mice
Mice, Nude
Minor Histocompatibility Antigens - genetics
Mitochondria
Mitochondria - metabolism
Molecular Targeted Therapy - methods
Neoplastic Stem Cells - metabolism
Original
Oxidation-Reduction
Oxidative Stress
Phosphorylation
Polyclonal antibodies
R&D
Reactive oxygen species
Research & development
Respiration
RNA, Messenger - metabolism
Scientific imaging
Squamous cell carcinoma
Squamous Cell Carcinoma of Head and Neck - drug therapy
Squamous Cell Carcinoma of Head and Neck - genetics
Squamous Cell Carcinoma of Head and Neck - metabolism
Squamous Cell Carcinoma of Head and Neck - pathology
Sulfasalazine
Sulfasalazine - pharmacology
Tricarboxylic acid cycle
Tumors
xCT
title Glutaminolysis‐related genes determine sensitivity to xCT‐targeted therapy in head and neck squamous cell carcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glutaminolysis%E2%80%90related%20genes%20determine%20sensitivity%20to%20xCT%E2%80%90targeted%20therapy%20in%20head%20and%20neck%20squamous%20cell%20carcinoma&rft.jtitle=Cancer%20science&rft.au=Okazaki,%20Shogo&rft.date=2019-11&rft.volume=110&rft.issue=11&rft.spage=3453&rft.epage=3463&rft.pages=3453-3463&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.14182&rft_dat=%3Cproquest_pubme%3E2311133659%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311133659&rft_id=info:pmid/31444923&rfr_iscdi=true