Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming
Well‐documented in terrestrial settings, priming effects describe stimulated heterotrophic microbial activity and decomposition of recalcitrant carbon by additions of labile carbon. In aquatic settings, algae produce labile exudates which may elicit priming during organic matter decomposition, yet t...
Gespeichert in:
Veröffentlicht in: | Functional ecology 2019-01, Vol.33 (1), p.188-201 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 1 |
container_start_page | 188 |
container_title | Functional ecology |
container_volume | 33 |
creator | Halvorson, Halvor M. Barry, Jacob R. Lodato, Matthew B. Findlay, Robert H. Francoeur, Steven N. Kuehn, Kevin A. |
description | Well‐documented in terrestrial settings, priming effects describe stimulated heterotrophic microbial activity and decomposition of recalcitrant carbon by additions of labile carbon. In aquatic settings, algae produce labile exudates which may elicit priming during organic matter decomposition, yet the directions and mechanisms of aquatic priming effects remain poorly tested.
We tested algal‐induced priming during decomposition of two leaf species of contrasting recalcitrance, Liriodendron tulipifera and Quercus nigra, in experimental streams under light or dark conditions. We measured litter‐associated algal, bacterial, and fungal biomass and activity, stoichiometry, and litter decomposition rates over 43 days.
Light increased algal biomass and production rates, in turn increasing bacterial abundance 141%–733% and fungal production rates 20%–157%. Incubations with a photosynthesis inhibitor established that algal activity directly stimulated fungal production rates in the short term.
Algal‐stimulated fungal production rates on both leaf species were not coupled to long‐term increases in fungal biomass accrual or litter decomposition rates, which were 154%–157% and 164%–455% greater in the dark, respectively. The similar patterns on fast‐ vs. slow‐decomposing L. tulipifera and Q. nigra, respectively, indicated that substrate recalcitrance may not mediate priming strength or direction.
In this example of negative priming, periphytic algae decoupled fungal activity from decomposition, likely by providing labile carbon invested towards greater fungal growth and reproduction instead of recalcitrant carbon degradation. If common, algal‐induced negative priming could stimulate heterotrophy reliant on labile carbon yet suppress decomposition of recalcitrant carbon, modifying energy and nutrients available to upper trophic levels and enhancing organic carbon storage or export in well‐lit aquatic habitats.
plain language summary is available for this article.
Plain Language Summary |
doi_str_mv | 10.1111/1365-2435.13235 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6822982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48582891</jstor_id><sourcerecordid>48582891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5225-5b36d19030ca579db664c5904aacfab253a8920ad9ae242187278f96a0fc893e3</originalsourceid><addsrcrecordid>eNqFkc9rFDEYhoModq2ePSkBL16mzY9JJrkIsrQqFPSgRwnfZjLTLJnJmsys7H9vptsu6qW5BJLne3mTB6HXlFzQsi4pl6JiNRcXlDMunqDV6eQpWhEmdaVqyc_Qi5y3hBAtGHuOzjiVDae6WaGf31zyu9vD5C2G0IPDrbNx3gWHu3nsIWCwk9_76YC7FAccHHQ4-Gly6Y4cdjH7yccR7z3g0fVQaId3yQ9-7F-iZx2E7F7d7-fox_XV9_Xn6ubrpy_rjzeVLX1EJTZctlQTTiyIRrcbKWsrNKkBbAcbJjgozQi0GhyrGVUNa1SnJZDOKs0dP0cfjrm7eTO41rpxShDM0gLSwUTw5t-b0d-aPu6NVIxpxUrA-_uAFH_NLk9m8Nm6EGB0cc6GcUolV3Xp-CjKGFFKCkEL-u4_dBvnNJafMIxKpXQRsgReHimbYs7JdafelJjFslmcmsWpubNcJt7-_dwT_6C1AOII_PbBHR7LM9dX64fgN8e5bZ5iOs3VSiimNOV_AMwuu6Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168890090</pqid></control><display><type>article</type><title>Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming</title><source>EZB Free E-Journals</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library All Journals</source><creator>Halvorson, Halvor M. ; Barry, Jacob R. ; Lodato, Matthew B. ; Findlay, Robert H. ; Francoeur, Steven N. ; Kuehn, Kevin A.</creator><creatorcontrib>Halvorson, Halvor M. ; Barry, Jacob R. ; Lodato, Matthew B. ; Findlay, Robert H. ; Francoeur, Steven N. ; Kuehn, Kevin A.</creatorcontrib><description>Well‐documented in terrestrial settings, priming effects describe stimulated heterotrophic microbial activity and decomposition of recalcitrant carbon by additions of labile carbon. In aquatic settings, algae produce labile exudates which may elicit priming during organic matter decomposition, yet the directions and mechanisms of aquatic priming effects remain poorly tested.
We tested algal‐induced priming during decomposition of two leaf species of contrasting recalcitrance, Liriodendron tulipifera and Quercus nigra, in experimental streams under light or dark conditions. We measured litter‐associated algal, bacterial, and fungal biomass and activity, stoichiometry, and litter decomposition rates over 43 days.
Light increased algal biomass and production rates, in turn increasing bacterial abundance 141%–733% and fungal production rates 20%–157%. Incubations with a photosynthesis inhibitor established that algal activity directly stimulated fungal production rates in the short term.
Algal‐stimulated fungal production rates on both leaf species were not coupled to long‐term increases in fungal biomass accrual or litter decomposition rates, which were 154%–157% and 164%–455% greater in the dark, respectively. The similar patterns on fast‐ vs. slow‐decomposing L. tulipifera and Q. nigra, respectively, indicated that substrate recalcitrance may not mediate priming strength or direction.
In this example of negative priming, periphytic algae decoupled fungal activity from decomposition, likely by providing labile carbon invested towards greater fungal growth and reproduction instead of recalcitrant carbon degradation. If common, algal‐induced negative priming could stimulate heterotrophy reliant on labile carbon yet suppress decomposition of recalcitrant carbon, modifying energy and nutrients available to upper trophic levels and enhancing organic carbon storage or export in well‐lit aquatic habitats.
plain language summary is available for this article.
Plain Language Summary</description><identifier>ISSN: 0269-8463</identifier><identifier>EISSN: 1365-2435</identifier><identifier>DOI: 10.1111/1365-2435.13235</identifier><identifier>PMID: 31673197</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Algae ; aquatic habitat ; Aquatic habitats ; bacteria ; Biodegradation ; Biological activity ; Biomass ; Carbon ; Carbon sequestration ; Decomposition ; detritus ; ecological stoichiometry ; ECOSYSTEM ECOLOGY ; energy ; exports ; Exudates ; Exudation ; fungal biomass ; fungal growth ; Fungi ; Heterotrophy ; labile carbon ; Leaf litter ; Leaves ; light ; Liriodendron tulipifera ; Microbial activity ; microbial heterotrophs ; Microorganisms ; Nutrient availability ; Nutrients ; Organic carbon ; Organic matter ; periphyton ; Photosynthesis ; plant litter ; Priming ; priming effects ; Quercus nigra ; reproduction ; Stoichiometry ; streams ; Substrates ; Terrestrial environments ; Trophic levels</subject><ispartof>Functional ecology, 2019-01, Vol.33 (1), p.188-201</ispartof><rights>2018 The Authors. © 2018 British Ecological Society</rights><rights>2018 The Authors. Functional Ecology © 2018 British Ecological Society</rights><rights>Functional Ecology © 2019 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5225-5b36d19030ca579db664c5904aacfab253a8920ad9ae242187278f96a0fc893e3</citedby><cites>FETCH-LOGICAL-c5225-5b36d19030ca579db664c5904aacfab253a8920ad9ae242187278f96a0fc893e3</cites><orcidid>0000-0003-3527-3271 ; 0000-0002-8094-3142 ; 0000-0002-7013-7147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2435.13235$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2435.13235$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31673197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Halvorson, Halvor M.</creatorcontrib><creatorcontrib>Barry, Jacob R.</creatorcontrib><creatorcontrib>Lodato, Matthew B.</creatorcontrib><creatorcontrib>Findlay, Robert H.</creatorcontrib><creatorcontrib>Francoeur, Steven N.</creatorcontrib><creatorcontrib>Kuehn, Kevin A.</creatorcontrib><title>Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming</title><title>Functional ecology</title><addtitle>Funct Ecol</addtitle><description>Well‐documented in terrestrial settings, priming effects describe stimulated heterotrophic microbial activity and decomposition of recalcitrant carbon by additions of labile carbon. In aquatic settings, algae produce labile exudates which may elicit priming during organic matter decomposition, yet the directions and mechanisms of aquatic priming effects remain poorly tested.
We tested algal‐induced priming during decomposition of two leaf species of contrasting recalcitrance, Liriodendron tulipifera and Quercus nigra, in experimental streams under light or dark conditions. We measured litter‐associated algal, bacterial, and fungal biomass and activity, stoichiometry, and litter decomposition rates over 43 days.
Light increased algal biomass and production rates, in turn increasing bacterial abundance 141%–733% and fungal production rates 20%–157%. Incubations with a photosynthesis inhibitor established that algal activity directly stimulated fungal production rates in the short term.
Algal‐stimulated fungal production rates on both leaf species were not coupled to long‐term increases in fungal biomass accrual or litter decomposition rates, which were 154%–157% and 164%–455% greater in the dark, respectively. The similar patterns on fast‐ vs. slow‐decomposing L. tulipifera and Q. nigra, respectively, indicated that substrate recalcitrance may not mediate priming strength or direction.
In this example of negative priming, periphytic algae decoupled fungal activity from decomposition, likely by providing labile carbon invested towards greater fungal growth and reproduction instead of recalcitrant carbon degradation. If common, algal‐induced negative priming could stimulate heterotrophy reliant on labile carbon yet suppress decomposition of recalcitrant carbon, modifying energy and nutrients available to upper trophic levels and enhancing organic carbon storage or export in well‐lit aquatic habitats.
plain language summary is available for this article.
Plain Language Summary</description><subject>Algae</subject><subject>aquatic habitat</subject><subject>Aquatic habitats</subject><subject>bacteria</subject><subject>Biodegradation</subject><subject>Biological activity</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon sequestration</subject><subject>Decomposition</subject><subject>detritus</subject><subject>ecological stoichiometry</subject><subject>ECOSYSTEM ECOLOGY</subject><subject>energy</subject><subject>exports</subject><subject>Exudates</subject><subject>Exudation</subject><subject>fungal biomass</subject><subject>fungal growth</subject><subject>Fungi</subject><subject>Heterotrophy</subject><subject>labile carbon</subject><subject>Leaf litter</subject><subject>Leaves</subject><subject>light</subject><subject>Liriodendron tulipifera</subject><subject>Microbial activity</subject><subject>microbial heterotrophs</subject><subject>Microorganisms</subject><subject>Nutrient availability</subject><subject>Nutrients</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>periphyton</subject><subject>Photosynthesis</subject><subject>plant litter</subject><subject>Priming</subject><subject>priming effects</subject><subject>Quercus nigra</subject><subject>reproduction</subject><subject>Stoichiometry</subject><subject>streams</subject><subject>Substrates</subject><subject>Terrestrial environments</subject><subject>Trophic levels</subject><issn>0269-8463</issn><issn>1365-2435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEYhoModq2ePSkBL16mzY9JJrkIsrQqFPSgRwnfZjLTLJnJmsys7H9vptsu6qW5BJLne3mTB6HXlFzQsi4pl6JiNRcXlDMunqDV6eQpWhEmdaVqyc_Qi5y3hBAtGHuOzjiVDae6WaGf31zyu9vD5C2G0IPDrbNx3gWHu3nsIWCwk9_76YC7FAccHHQ4-Gly6Y4cdjH7yccR7z3g0fVQaId3yQ9-7F-iZx2E7F7d7-fox_XV9_Xn6ubrpy_rjzeVLX1EJTZctlQTTiyIRrcbKWsrNKkBbAcbJjgozQi0GhyrGVUNa1SnJZDOKs0dP0cfjrm7eTO41rpxShDM0gLSwUTw5t-b0d-aPu6NVIxpxUrA-_uAFH_NLk9m8Nm6EGB0cc6GcUolV3Xp-CjKGFFKCkEL-u4_dBvnNJafMIxKpXQRsgReHimbYs7JdafelJjFslmcmsWpubNcJt7-_dwT_6C1AOII_PbBHR7LM9dX64fgN8e5bZ5iOs3VSiimNOV_AMwuu6Y</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Halvorson, Halvor M.</creator><creator>Barry, Jacob R.</creator><creator>Lodato, Matthew B.</creator><creator>Findlay, Robert H.</creator><creator>Francoeur, Steven N.</creator><creator>Kuehn, Kevin A.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3527-3271</orcidid><orcidid>https://orcid.org/0000-0002-8094-3142</orcidid><orcidid>https://orcid.org/0000-0002-7013-7147</orcidid></search><sort><creationdate>201901</creationdate><title>Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming</title><author>Halvorson, Halvor M. ; Barry, Jacob R. ; Lodato, Matthew B. ; Findlay, Robert H. ; Francoeur, Steven N. ; Kuehn, Kevin A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5225-5b36d19030ca579db664c5904aacfab253a8920ad9ae242187278f96a0fc893e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algae</topic><topic>aquatic habitat</topic><topic>Aquatic habitats</topic><topic>bacteria</topic><topic>Biodegradation</topic><topic>Biological activity</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon sequestration</topic><topic>Decomposition</topic><topic>detritus</topic><topic>ecological stoichiometry</topic><topic>ECOSYSTEM ECOLOGY</topic><topic>energy</topic><topic>exports</topic><topic>Exudates</topic><topic>Exudation</topic><topic>fungal biomass</topic><topic>fungal growth</topic><topic>Fungi</topic><topic>Heterotrophy</topic><topic>labile carbon</topic><topic>Leaf litter</topic><topic>Leaves</topic><topic>light</topic><topic>Liriodendron tulipifera</topic><topic>Microbial activity</topic><topic>microbial heterotrophs</topic><topic>Microorganisms</topic><topic>Nutrient availability</topic><topic>Nutrients</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>periphyton</topic><topic>Photosynthesis</topic><topic>plant litter</topic><topic>Priming</topic><topic>priming effects</topic><topic>Quercus nigra</topic><topic>reproduction</topic><topic>Stoichiometry</topic><topic>streams</topic><topic>Substrates</topic><topic>Terrestrial environments</topic><topic>Trophic levels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halvorson, Halvor M.</creatorcontrib><creatorcontrib>Barry, Jacob R.</creatorcontrib><creatorcontrib>Lodato, Matthew B.</creatorcontrib><creatorcontrib>Findlay, Robert H.</creatorcontrib><creatorcontrib>Francoeur, Steven N.</creatorcontrib><creatorcontrib>Kuehn, Kevin A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Functional ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halvorson, Halvor M.</au><au>Barry, Jacob R.</au><au>Lodato, Matthew B.</au><au>Findlay, Robert H.</au><au>Francoeur, Steven N.</au><au>Kuehn, Kevin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming</atitle><jtitle>Functional ecology</jtitle><addtitle>Funct Ecol</addtitle><date>2019-01</date><risdate>2019</risdate><volume>33</volume><issue>1</issue><spage>188</spage><epage>201</epage><pages>188-201</pages><issn>0269-8463</issn><eissn>1365-2435</eissn><abstract>Well‐documented in terrestrial settings, priming effects describe stimulated heterotrophic microbial activity and decomposition of recalcitrant carbon by additions of labile carbon. In aquatic settings, algae produce labile exudates which may elicit priming during organic matter decomposition, yet the directions and mechanisms of aquatic priming effects remain poorly tested.
We tested algal‐induced priming during decomposition of two leaf species of contrasting recalcitrance, Liriodendron tulipifera and Quercus nigra, in experimental streams under light or dark conditions. We measured litter‐associated algal, bacterial, and fungal biomass and activity, stoichiometry, and litter decomposition rates over 43 days.
Light increased algal biomass and production rates, in turn increasing bacterial abundance 141%–733% and fungal production rates 20%–157%. Incubations with a photosynthesis inhibitor established that algal activity directly stimulated fungal production rates in the short term.
Algal‐stimulated fungal production rates on both leaf species were not coupled to long‐term increases in fungal biomass accrual or litter decomposition rates, which were 154%–157% and 164%–455% greater in the dark, respectively. The similar patterns on fast‐ vs. slow‐decomposing L. tulipifera and Q. nigra, respectively, indicated that substrate recalcitrance may not mediate priming strength or direction.
In this example of negative priming, periphytic algae decoupled fungal activity from decomposition, likely by providing labile carbon invested towards greater fungal growth and reproduction instead of recalcitrant carbon degradation. If common, algal‐induced negative priming could stimulate heterotrophy reliant on labile carbon yet suppress decomposition of recalcitrant carbon, modifying energy and nutrients available to upper trophic levels and enhancing organic carbon storage or export in well‐lit aquatic habitats.
plain language summary is available for this article.
Plain Language Summary</abstract><cop>England</cop><pub>Wiley</pub><pmid>31673197</pmid><doi>10.1111/1365-2435.13235</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3527-3271</orcidid><orcidid>https://orcid.org/0000-0002-8094-3142</orcidid><orcidid>https://orcid.org/0000-0002-7013-7147</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-8463 |
ispartof | Functional ecology, 2019-01, Vol.33 (1), p.188-201 |
issn | 0269-8463 1365-2435 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6822982 |
source | EZB Free E-Journals; Wiley Online Library Free Content; Wiley Online Library All Journals |
subjects | Algae aquatic habitat Aquatic habitats bacteria Biodegradation Biological activity Biomass Carbon Carbon sequestration Decomposition detritus ecological stoichiometry ECOSYSTEM ECOLOGY energy exports Exudates Exudation fungal biomass fungal growth Fungi Heterotrophy labile carbon Leaf litter Leaves light Liriodendron tulipifera Microbial activity microbial heterotrophs Microorganisms Nutrient availability Nutrients Organic carbon Organic matter periphyton Photosynthesis plant litter Priming priming effects Quercus nigra reproduction Stoichiometry streams Substrates Terrestrial environments Trophic levels |
title | Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periphytic%20algae%20decouple%20fungal%20activity%20from%20leaf%20litter%20decomposition%20via%20negative%20priming&rft.jtitle=Functional%20ecology&rft.au=Halvorson,%20Halvor%20M.&rft.date=2019-01&rft.volume=33&rft.issue=1&rft.spage=188&rft.epage=201&rft.pages=188-201&rft.issn=0269-8463&rft.eissn=1365-2435&rft_id=info:doi/10.1111/1365-2435.13235&rft_dat=%3Cjstor_pubme%3E48582891%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168890090&rft_id=info:pmid/31673197&rft_jstor_id=48582891&rfr_iscdi=true |