Volume Averaging for Urban Canopies

When canopy flows are horizontally averaged to obtain mean profiles, the averaging operation can be defined either as an intrinsic average, normalized by the variable fluid volume, or as a superficial average, normalized by the total volume including solid canopy elements. Properties of spatial aver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary-layer meteorology 2019-12, Vol.173 (3), p.349-372
Hauptverfasser: Schmid, Manuel F., Lawrence, Gregory A., Parlange, Marc B., Giometto, Marco G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 3
container_start_page 349
container_title Boundary-layer meteorology
container_volume 173
creator Schmid, Manuel F.
Lawrence, Gregory A.
Parlange, Marc B.
Giometto, Marco G.
description When canopy flows are horizontally averaged to obtain mean profiles, the averaging operation can be defined either as an intrinsic average, normalized by the variable fluid volume, or as a superficial average, normalized by the total volume including solid canopy elements. Properties of spatial averages have been explored extensively in the context of flow through plant canopies, albeit with the assumption that the solid volume fraction is negligible. Without this simplification, properties relevant for non-linear terms apply to intrinsic averages while properties of gradients apply to superficial averages. To avoid inconsistencies and inaccuracies the impact of a non-negligible solid volume fraction should be considered carefully when interpreting mean profiles, when deriving mathematical relations for averaged quantities, and when introducing modelling assumptions for such terms. On this basis, we review the definitions and properties of the method of volume averaging, as developed in the more general context of flow through porous media, and discuss its application to urban canopy flows. We illustrate the properties of intrinsic and superficial averages and their effect on mean profiles with example data from a simulation of flow over constant-height cubes.
doi_str_mv 10.1007/s10546-019-00470-3
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6822781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A603871670</galeid><sourcerecordid>A603871670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-4e3229f0d79da371ba546c3ec999fb77e6c51f5535405b42d8845d818ef355af3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhD3BAK_XCJWUmtmP7grRa0YJUiQvlajmOHVwl9mJvKvHvcUkpHweQD5ZnnnlnPC8hLxHOEUC8KQicdQ2gagCYgIY-IhvkgjbIRPuYbACgayRFdkKelXJTnwI5PCUnFAVILvmGnH1O0zK77e7WZTOGOG59ytvr3Ju43ZuYDsGV5-SJN1NxL-7vU3J98e7T_n1z9fHyw3531dg6xrFhjrat8jAINRgqsDc1bKmzSinfC-E6y9FzTjkD3rN2kJLxQaJ0nnJuPD0lb1fdw9LPbrAuHrOZ9CGH2eRvOpmg_8zE8EWP6VZ3sm2FxCrw-l4gp6-LK0c9h2LdNJno0lJ0ywA4KKnY_1GKtOMSWVfRs7_Qm7TkWDeha1vGuUJJK3W-UqOZnA7RpzqirWdwc7ApOh9qfNcBlQI7AbWgXQtsTqVk5x8-iqDv_NWrv7r6q3_4q--6vPp9RQ8lPw2tAF2BUlNxdPnXsP-Q_Q79Ka2E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274559183</pqid></control><display><type>article</type><title>Volume Averaging for Urban Canopies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Schmid, Manuel F. ; Lawrence, Gregory A. ; Parlange, Marc B. ; Giometto, Marco G.</creator><creatorcontrib>Schmid, Manuel F. ; Lawrence, Gregory A. ; Parlange, Marc B. ; Giometto, Marco G.</creatorcontrib><description>When canopy flows are horizontally averaged to obtain mean profiles, the averaging operation can be defined either as an intrinsic average, normalized by the variable fluid volume, or as a superficial average, normalized by the total volume including solid canopy elements. Properties of spatial averages have been explored extensively in the context of flow through plant canopies, albeit with the assumption that the solid volume fraction is negligible. Without this simplification, properties relevant for non-linear terms apply to intrinsic averages while properties of gradients apply to superficial averages. To avoid inconsistencies and inaccuracies the impact of a non-negligible solid volume fraction should be considered carefully when interpreting mean profiles, when deriving mathematical relations for averaged quantities, and when introducing modelling assumptions for such terms. On this basis, we review the definitions and properties of the method of volume averaging, as developed in the more general context of flow through porous media, and discuss its application to urban canopy flows. We illustrate the properties of intrinsic and superficial averages and their effect on mean profiles with example data from a simulation of flow over constant-height cubes.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-019-00470-3</identifier><identifier>PMID: 31708585</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Canopies ; Canopy ; Civil engineering ; Computer simulation ; Cubes ; Earth and Environmental Science ; Earth Sciences ; Meteorology ; Porous media ; Profiles ; Properties ; Properties (attributes) ; Research Article ; Vegetation</subject><ispartof>Boundary-layer meteorology, 2019-12, Vol.173 (3), p.349-372</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019.</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Boundary-Layer Meteorology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-4e3229f0d79da371ba546c3ec999fb77e6c51f5535405b42d8845d818ef355af3</citedby><cites>FETCH-LOGICAL-c546t-4e3229f0d79da371ba546c3ec999fb77e6c51f5535405b42d8845d818ef355af3</cites><orcidid>0000-0001-6972-4371 ; 0000-0002-7880-9913 ; 0000-0002-1011-8227 ; 0000-0001-9661-0599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-019-00470-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-019-00470-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31708585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmid, Manuel F.</creatorcontrib><creatorcontrib>Lawrence, Gregory A.</creatorcontrib><creatorcontrib>Parlange, Marc B.</creatorcontrib><creatorcontrib>Giometto, Marco G.</creatorcontrib><title>Volume Averaging for Urban Canopies</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><addtitle>Boundary Layer Meteorol</addtitle><description>When canopy flows are horizontally averaged to obtain mean profiles, the averaging operation can be defined either as an intrinsic average, normalized by the variable fluid volume, or as a superficial average, normalized by the total volume including solid canopy elements. Properties of spatial averages have been explored extensively in the context of flow through plant canopies, albeit with the assumption that the solid volume fraction is negligible. Without this simplification, properties relevant for non-linear terms apply to intrinsic averages while properties of gradients apply to superficial averages. To avoid inconsistencies and inaccuracies the impact of a non-negligible solid volume fraction should be considered carefully when interpreting mean profiles, when deriving mathematical relations for averaged quantities, and when introducing modelling assumptions for such terms. On this basis, we review the definitions and properties of the method of volume averaging, as developed in the more general context of flow through porous media, and discuss its application to urban canopy flows. We illustrate the properties of intrinsic and superficial averages and their effect on mean profiles with example data from a simulation of flow over constant-height cubes.</description><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Canopies</subject><subject>Canopy</subject><subject>Civil engineering</subject><subject>Computer simulation</subject><subject>Cubes</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Meteorology</subject><subject>Porous media</subject><subject>Profiles</subject><subject>Properties</subject><subject>Properties (attributes)</subject><subject>Research Article</subject><subject>Vegetation</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhi0EokvhD3BAK_XCJWUmtmP7grRa0YJUiQvlajmOHVwl9mJvKvHvcUkpHweQD5ZnnnlnPC8hLxHOEUC8KQicdQ2gagCYgIY-IhvkgjbIRPuYbACgayRFdkKelXJTnwI5PCUnFAVILvmGnH1O0zK77e7WZTOGOG59ytvr3Ju43ZuYDsGV5-SJN1NxL-7vU3J98e7T_n1z9fHyw3531dg6xrFhjrat8jAINRgqsDc1bKmzSinfC-E6y9FzTjkD3rN2kJLxQaJ0nnJuPD0lb1fdw9LPbrAuHrOZ9CGH2eRvOpmg_8zE8EWP6VZ3sm2FxCrw-l4gp6-LK0c9h2LdNJno0lJ0ywA4KKnY_1GKtOMSWVfRs7_Qm7TkWDeha1vGuUJJK3W-UqOZnA7RpzqirWdwc7ApOh9qfNcBlQI7AbWgXQtsTqVk5x8-iqDv_NWrv7r6q3_4q--6vPp9RQ8lPw2tAF2BUlNxdPnXsP-Q_Q79Ka2E</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Schmid, Manuel F.</creator><creator>Lawrence, Gregory A.</creator><creator>Parlange, Marc B.</creator><creator>Giometto, Marco G.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6972-4371</orcidid><orcidid>https://orcid.org/0000-0002-7880-9913</orcidid><orcidid>https://orcid.org/0000-0002-1011-8227</orcidid><orcidid>https://orcid.org/0000-0001-9661-0599</orcidid></search><sort><creationdate>20191201</creationdate><title>Volume Averaging for Urban Canopies</title><author>Schmid, Manuel F. ; Lawrence, Gregory A. ; Parlange, Marc B. ; Giometto, Marco G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-4e3229f0d79da371ba546c3ec999fb77e6c51f5535405b42d8845d818ef355af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Canopies</topic><topic>Canopy</topic><topic>Civil engineering</topic><topic>Computer simulation</topic><topic>Cubes</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Meteorology</topic><topic>Porous media</topic><topic>Profiles</topic><topic>Properties</topic><topic>Properties (attributes)</topic><topic>Research Article</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmid, Manuel F.</creatorcontrib><creatorcontrib>Lawrence, Gregory A.</creatorcontrib><creatorcontrib>Parlange, Marc B.</creatorcontrib><creatorcontrib>Giometto, Marco G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmid, Manuel F.</au><au>Lawrence, Gregory A.</au><au>Parlange, Marc B.</au><au>Giometto, Marco G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volume Averaging for Urban Canopies</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><addtitle>Boundary Layer Meteorol</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>173</volume><issue>3</issue><spage>349</spage><epage>372</epage><pages>349-372</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>When canopy flows are horizontally averaged to obtain mean profiles, the averaging operation can be defined either as an intrinsic average, normalized by the variable fluid volume, or as a superficial average, normalized by the total volume including solid canopy elements. Properties of spatial averages have been explored extensively in the context of flow through plant canopies, albeit with the assumption that the solid volume fraction is negligible. Without this simplification, properties relevant for non-linear terms apply to intrinsic averages while properties of gradients apply to superficial averages. To avoid inconsistencies and inaccuracies the impact of a non-negligible solid volume fraction should be considered carefully when interpreting mean profiles, when deriving mathematical relations for averaged quantities, and when introducing modelling assumptions for such terms. On this basis, we review the definitions and properties of the method of volume averaging, as developed in the more general context of flow through porous media, and discuss its application to urban canopy flows. We illustrate the properties of intrinsic and superficial averages and their effect on mean profiles with example data from a simulation of flow over constant-height cubes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>31708585</pmid><doi>10.1007/s10546-019-00470-3</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6972-4371</orcidid><orcidid>https://orcid.org/0000-0002-7880-9913</orcidid><orcidid>https://orcid.org/0000-0002-1011-8227</orcidid><orcidid>https://orcid.org/0000-0001-9661-0599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2019-12, Vol.173 (3), p.349-372
issn 0006-8314
1573-1472
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6822781
source SpringerLink Journals - AutoHoldings
subjects Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Canopies
Canopy
Civil engineering
Computer simulation
Cubes
Earth and Environmental Science
Earth Sciences
Meteorology
Porous media
Profiles
Properties
Properties (attributes)
Research Article
Vegetation
title Volume Averaging for Urban Canopies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volume%20Averaging%20for%20Urban%20Canopies&rft.jtitle=Boundary-layer%20meteorology&rft.au=Schmid,%20Manuel%20F.&rft.date=2019-12-01&rft.volume=173&rft.issue=3&rft.spage=349&rft.epage=372&rft.pages=349-372&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-019-00470-3&rft_dat=%3Cgale_pubme%3EA603871670%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2274559183&rft_id=info:pmid/31708585&rft_galeid=A603871670&rfr_iscdi=true