Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice

Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2019-11, Vol.129 (11), p.4739-4744
Hauptverfasser: Klein, Arnaud F, Varela, Miguel A, Arandel, Ludovic, Holland, Ashling, Naouar, Naira, Arzumanov, Andrey, Seoane, David, Revillod, Lucile, Bassez, Guillaume, Ferry, Arnaud, Jauvin, Dominic, Gourdon, Genevieve, Puymirat, Jack, Gait, Michael J, Furling, Denis, Wood, Matthew Ja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4744
container_issue 11
container_start_page 4739
container_title The Journal of clinical investigation
container_volume 129
creator Klein, Arnaud F
Varela, Miguel A
Arandel, Ludovic
Holland, Ashling
Naouar, Naira
Arzumanov, Andrey
Seoane, David
Revillod, Lucile
Bassez, Guillaume
Ferry, Arnaud
Jauvin, Dominic
Gourdon, Genevieve
Puymirat, Jack
Gait, Michael J
Furling, Denis
Wood, Matthew Ja
description Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment with Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient-derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces long-lasting correction with high efficacy of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide conjugates for systemic corrective therapy in DM1.
doi_str_mv 10.1172/JCI128205
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6819114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A609854885</galeid><sourcerecordid>A609854885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c653t-255d847dfe3f13ebdfa93fc1117a1198b970d9d3597bb3d0700cf4d20a61cad73</originalsourceid><addsrcrecordid>eNqNkk2L2zAQhk1p6Wa3PfQPFEOhsAdvJcuK5UshhLabEtjSr6uQpbGtrSwZSzbNv1-FtGFTcig6CGae9x1pZpLkFUY3GJf5u8_rDc5ZjuiTZIEpZRnLCXuaLBDKcVaVhF0kl97fI4SLghbPkwuCi7IqCFok8xcYglaQSWfvp1YEUKkzunV2kgbcPuVTmN0vSI2zbWaED9q2ab9zwVktU7XzYXRDt0ulG0eQQTubapsOImiwIVMw6jmaSjDGp8KqtNcSXiTPGmE8vPxzXyU_Pn74vr7NtnefNuvVNpNLSkKWU6pYUaoGSIMJ1KoRFWkkjr8WGFesrkqkKkVoVdY1UahESDaFypFYYilUSa6S9wffYap7UDK-aBSGD6PuxbjjTmh-mrG6462b-ZLhCuMiGlwfDLp_ZLerLd_HECkpoQTPOLJvDmwrDHBtGxctZa-95KslqhgtGKORys5QLViI9Z2FRsfwCX9zho9HQezkWcH1iSAyAX6HVkze8823r__P3v08Zd8-YjsQJnTemWk_cX_WVI7O-xGaY-Mw4vuF5ceFjezrxwM6kn83lDwAKxHk-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Klein, Arnaud F ; Varela, Miguel A ; Arandel, Ludovic ; Holland, Ashling ; Naouar, Naira ; Arzumanov, Andrey ; Seoane, David ; Revillod, Lucile ; Bassez, Guillaume ; Ferry, Arnaud ; Jauvin, Dominic ; Gourdon, Genevieve ; Puymirat, Jack ; Gait, Michael J ; Furling, Denis ; Wood, Matthew Ja</creator><creatorcontrib>Klein, Arnaud F ; Varela, Miguel A ; Arandel, Ludovic ; Holland, Ashling ; Naouar, Naira ; Arzumanov, Andrey ; Seoane, David ; Revillod, Lucile ; Bassez, Guillaume ; Ferry, Arnaud ; Jauvin, Dominic ; Gourdon, Genevieve ; Puymirat, Jack ; Gait, Michael J ; Furling, Denis ; Wood, Matthew Ja</creatorcontrib><description>Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment with Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient-derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces long-lasting correction with high efficacy of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide conjugates for systemic corrective therapy in DM1.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI128205</identifier><identifier>PMID: 31479430</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Arginine ; Cell-Penetrating Peptides - pharmacology ; Cells, Cultured ; Concise Communication ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Dose-Response Relationship, Drug ; Genetic aspects ; Health aspects ; Human health and pathology ; Humans ; Life Sciences ; Mice ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Myotonic dystrophy ; Myotonic Dystrophy - drug therapy ; Myotonic Dystrophy - genetics ; Myotonic Dystrophy - metabolism ; Myotonic Dystrophy - pathology ; Myotonin-Protein Kinase - genetics ; Myotonin-Protein Kinase - metabolism ; Oligodeoxyribonucleotides, Antisense - genetics ; Oligodeoxyribonucleotides, Antisense - pharmacology ; Peptides ; Phenotypes ; Protein kinases ; RNA ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Skeletal muscle</subject><ispartof>The Journal of clinical investigation, 2019-11, Vol.129 (11), p.4739-4744</ispartof><rights>COPYRIGHT 2019 American Society for Clinical Investigation</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019 Klein et al. 2019 Klein et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c653t-255d847dfe3f13ebdfa93fc1117a1198b970d9d3597bb3d0700cf4d20a61cad73</citedby><cites>FETCH-LOGICAL-c653t-255d847dfe3f13ebdfa93fc1117a1198b970d9d3597bb3d0700cf4d20a61cad73</cites><orcidid>0000-0002-3860-7049 ; 0000-0002-2044-1052 ; 0000-0001-8256-7665 ; 0000-0001-7912-4409 ; 0000-0002-3319-1347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819114/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819114/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31479430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03753531$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Arnaud F</creatorcontrib><creatorcontrib>Varela, Miguel A</creatorcontrib><creatorcontrib>Arandel, Ludovic</creatorcontrib><creatorcontrib>Holland, Ashling</creatorcontrib><creatorcontrib>Naouar, Naira</creatorcontrib><creatorcontrib>Arzumanov, Andrey</creatorcontrib><creatorcontrib>Seoane, David</creatorcontrib><creatorcontrib>Revillod, Lucile</creatorcontrib><creatorcontrib>Bassez, Guillaume</creatorcontrib><creatorcontrib>Ferry, Arnaud</creatorcontrib><creatorcontrib>Jauvin, Dominic</creatorcontrib><creatorcontrib>Gourdon, Genevieve</creatorcontrib><creatorcontrib>Puymirat, Jack</creatorcontrib><creatorcontrib>Gait, Michael J</creatorcontrib><creatorcontrib>Furling, Denis</creatorcontrib><creatorcontrib>Wood, Matthew Ja</creatorcontrib><title>Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment with Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient-derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces long-lasting correction with high efficacy of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide conjugates for systemic corrective therapy in DM1.</description><subject>Animals</subject><subject>Arginine</subject><subject>Cell-Penetrating Peptides - pharmacology</subject><subject>Cells, Cultured</subject><subject>Concise Communication</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Myotonic dystrophy</subject><subject>Myotonic Dystrophy - drug therapy</subject><subject>Myotonic Dystrophy - genetics</subject><subject>Myotonic Dystrophy - metabolism</subject><subject>Myotonic Dystrophy - pathology</subject><subject>Myotonin-Protein Kinase - genetics</subject><subject>Myotonin-Protein Kinase - metabolism</subject><subject>Oligodeoxyribonucleotides, Antisense - genetics</subject><subject>Oligodeoxyribonucleotides, Antisense - pharmacology</subject><subject>Peptides</subject><subject>Phenotypes</subject><subject>Protein kinases</subject><subject>RNA</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Skeletal muscle</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk2L2zAQhk1p6Wa3PfQPFEOhsAdvJcuK5UshhLabEtjSr6uQpbGtrSwZSzbNv1-FtGFTcig6CGae9x1pZpLkFUY3GJf5u8_rDc5ZjuiTZIEpZRnLCXuaLBDKcVaVhF0kl97fI4SLghbPkwuCi7IqCFok8xcYglaQSWfvp1YEUKkzunV2kgbcPuVTmN0vSI2zbWaED9q2ab9zwVktU7XzYXRDt0ulG0eQQTubapsOImiwIVMw6jmaSjDGp8KqtNcSXiTPGmE8vPxzXyU_Pn74vr7NtnefNuvVNpNLSkKWU6pYUaoGSIMJ1KoRFWkkjr8WGFesrkqkKkVoVdY1UahESDaFypFYYilUSa6S9wffYap7UDK-aBSGD6PuxbjjTmh-mrG6462b-ZLhCuMiGlwfDLp_ZLerLd_HECkpoQTPOLJvDmwrDHBtGxctZa-95KslqhgtGKORys5QLViI9Z2FRsfwCX9zho9HQezkWcH1iSAyAX6HVkze8823r__P3v08Zd8-YjsQJnTemWk_cX_WVI7O-xGaY-Mw4vuF5ceFjezrxwM6kn83lDwAKxHk-Q</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Klein, Arnaud F</creator><creator>Varela, Miguel A</creator><creator>Arandel, Ludovic</creator><creator>Holland, Ashling</creator><creator>Naouar, Naira</creator><creator>Arzumanov, Andrey</creator><creator>Seoane, David</creator><creator>Revillod, Lucile</creator><creator>Bassez, Guillaume</creator><creator>Ferry, Arnaud</creator><creator>Jauvin, Dominic</creator><creator>Gourdon, Genevieve</creator><creator>Puymirat, Jack</creator><creator>Gait, Michael J</creator><creator>Furling, Denis</creator><creator>Wood, Matthew Ja</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3860-7049</orcidid><orcidid>https://orcid.org/0000-0002-2044-1052</orcidid><orcidid>https://orcid.org/0000-0001-8256-7665</orcidid><orcidid>https://orcid.org/0000-0001-7912-4409</orcidid><orcidid>https://orcid.org/0000-0002-3319-1347</orcidid></search><sort><creationdate>20191101</creationdate><title>Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice</title><author>Klein, Arnaud F ; Varela, Miguel A ; Arandel, Ludovic ; Holland, Ashling ; Naouar, Naira ; Arzumanov, Andrey ; Seoane, David ; Revillod, Lucile ; Bassez, Guillaume ; Ferry, Arnaud ; Jauvin, Dominic ; Gourdon, Genevieve ; Puymirat, Jack ; Gait, Michael J ; Furling, Denis ; Wood, Matthew Ja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c653t-255d847dfe3f13ebdfa93fc1117a1198b970d9d3597bb3d0700cf4d20a61cad73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Arginine</topic><topic>Cell-Penetrating Peptides - pharmacology</topic><topic>Cells, Cultured</topic><topic>Concise Communication</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Myotonic dystrophy</topic><topic>Myotonic Dystrophy - drug therapy</topic><topic>Myotonic Dystrophy - genetics</topic><topic>Myotonic Dystrophy - metabolism</topic><topic>Myotonic Dystrophy - pathology</topic><topic>Myotonin-Protein Kinase - genetics</topic><topic>Myotonin-Protein Kinase - metabolism</topic><topic>Oligodeoxyribonucleotides, Antisense - genetics</topic><topic>Oligodeoxyribonucleotides, Antisense - pharmacology</topic><topic>Peptides</topic><topic>Phenotypes</topic><topic>Protein kinases</topic><topic>RNA</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Arnaud F</creatorcontrib><creatorcontrib>Varela, Miguel A</creatorcontrib><creatorcontrib>Arandel, Ludovic</creatorcontrib><creatorcontrib>Holland, Ashling</creatorcontrib><creatorcontrib>Naouar, Naira</creatorcontrib><creatorcontrib>Arzumanov, Andrey</creatorcontrib><creatorcontrib>Seoane, David</creatorcontrib><creatorcontrib>Revillod, Lucile</creatorcontrib><creatorcontrib>Bassez, Guillaume</creatorcontrib><creatorcontrib>Ferry, Arnaud</creatorcontrib><creatorcontrib>Jauvin, Dominic</creatorcontrib><creatorcontrib>Gourdon, Genevieve</creatorcontrib><creatorcontrib>Puymirat, Jack</creatorcontrib><creatorcontrib>Gait, Michael J</creatorcontrib><creatorcontrib>Furling, Denis</creatorcontrib><creatorcontrib>Wood, Matthew Ja</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Arnaud F</au><au>Varela, Miguel A</au><au>Arandel, Ludovic</au><au>Holland, Ashling</au><au>Naouar, Naira</au><au>Arzumanov, Andrey</au><au>Seoane, David</au><au>Revillod, Lucile</au><au>Bassez, Guillaume</au><au>Ferry, Arnaud</au><au>Jauvin, Dominic</au><au>Gourdon, Genevieve</au><au>Puymirat, Jack</au><au>Gait, Michael J</au><au>Furling, Denis</au><au>Wood, Matthew Ja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>129</volume><issue>11</issue><spage>4739</spage><epage>4744</epage><pages>4739-4744</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment with Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient-derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces long-lasting correction with high efficacy of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide conjugates for systemic corrective therapy in DM1.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>31479430</pmid><doi>10.1172/JCI128205</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3860-7049</orcidid><orcidid>https://orcid.org/0000-0002-2044-1052</orcidid><orcidid>https://orcid.org/0000-0001-8256-7665</orcidid><orcidid>https://orcid.org/0000-0001-7912-4409</orcidid><orcidid>https://orcid.org/0000-0002-3319-1347</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2019-11, Vol.129 (11), p.4739-4744
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6819114
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Arginine
Cell-Penetrating Peptides - pharmacology
Cells, Cultured
Concise Communication
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Dose-Response Relationship, Drug
Genetic aspects
Health aspects
Human health and pathology
Humans
Life Sciences
Mice
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Myotonic dystrophy
Myotonic Dystrophy - drug therapy
Myotonic Dystrophy - genetics
Myotonic Dystrophy - metabolism
Myotonic Dystrophy - pathology
Myotonin-Protein Kinase - genetics
Myotonin-Protein Kinase - metabolism
Oligodeoxyribonucleotides, Antisense - genetics
Oligodeoxyribonucleotides, Antisense - pharmacology
Peptides
Phenotypes
Protein kinases
RNA
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Skeletal muscle
title Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peptide-conjugated%20oligonucleotides%20evoke%20long-lasting%20myotonic%20dystrophy%20correction%20in%20patient-derived%20cells%20and%20mice&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Klein,%20Arnaud%20F&rft.date=2019-11-01&rft.volume=129&rft.issue=11&rft.spage=4739&rft.epage=4744&rft.pages=4739-4744&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI128205&rft_dat=%3Cgale_pubme%3EA609854885%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31479430&rft_galeid=A609854885&rfr_iscdi=true