Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice
Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2019-11, Vol.129 (11), p.4739-4744 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4744 |
---|---|
container_issue | 11 |
container_start_page | 4739 |
container_title | The Journal of clinical investigation |
container_volume | 129 |
creator | Klein, Arnaud F Varela, Miguel A Arandel, Ludovic Holland, Ashling Naouar, Naira Arzumanov, Andrey Seoane, David Revillod, Lucile Bassez, Guillaume Ferry, Arnaud Jauvin, Dominic Gourdon, Genevieve Puymirat, Jack Gait, Michael J Furling, Denis Wood, Matthew Ja |
description | Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment with Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient-derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces long-lasting correction with high efficacy of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide conjugates for systemic corrective therapy in DM1. |
doi_str_mv | 10.1172/JCI128205 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6819114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A609854885</galeid><sourcerecordid>A609854885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c653t-255d847dfe3f13ebdfa93fc1117a1198b970d9d3597bb3d0700cf4d20a61cad73</originalsourceid><addsrcrecordid>eNqNkk2L2zAQhk1p6Wa3PfQPFEOhsAdvJcuK5UshhLabEtjSr6uQpbGtrSwZSzbNv1-FtGFTcig6CGae9x1pZpLkFUY3GJf5u8_rDc5ZjuiTZIEpZRnLCXuaLBDKcVaVhF0kl97fI4SLghbPkwuCi7IqCFok8xcYglaQSWfvp1YEUKkzunV2kgbcPuVTmN0vSI2zbWaED9q2ab9zwVktU7XzYXRDt0ulG0eQQTubapsOImiwIVMw6jmaSjDGp8KqtNcSXiTPGmE8vPxzXyU_Pn74vr7NtnefNuvVNpNLSkKWU6pYUaoGSIMJ1KoRFWkkjr8WGFesrkqkKkVoVdY1UahESDaFypFYYilUSa6S9wffYap7UDK-aBSGD6PuxbjjTmh-mrG6462b-ZLhCuMiGlwfDLp_ZLerLd_HECkpoQTPOLJvDmwrDHBtGxctZa-95KslqhgtGKORys5QLViI9Z2FRsfwCX9zho9HQezkWcH1iSAyAX6HVkze8823r__P3v08Zd8-YjsQJnTemWk_cX_WVI7O-xGaY-Mw4vuF5ceFjezrxwM6kn83lDwAKxHk-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Klein, Arnaud F ; Varela, Miguel A ; Arandel, Ludovic ; Holland, Ashling ; Naouar, Naira ; Arzumanov, Andrey ; Seoane, David ; Revillod, Lucile ; Bassez, Guillaume ; Ferry, Arnaud ; Jauvin, Dominic ; Gourdon, Genevieve ; Puymirat, Jack ; Gait, Michael J ; Furling, Denis ; Wood, Matthew Ja</creator><creatorcontrib>Klein, Arnaud F ; Varela, Miguel A ; Arandel, Ludovic ; Holland, Ashling ; Naouar, Naira ; Arzumanov, Andrey ; Seoane, David ; Revillod, Lucile ; Bassez, Guillaume ; Ferry, Arnaud ; Jauvin, Dominic ; Gourdon, Genevieve ; Puymirat, Jack ; Gait, Michael J ; Furling, Denis ; Wood, Matthew Ja</creatorcontrib><description>Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment with Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient-derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces long-lasting correction with high efficacy of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide conjugates for systemic corrective therapy in DM1.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI128205</identifier><identifier>PMID: 31479430</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Arginine ; Cell-Penetrating Peptides - pharmacology ; Cells, Cultured ; Concise Communication ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Dose-Response Relationship, Drug ; Genetic aspects ; Health aspects ; Human health and pathology ; Humans ; Life Sciences ; Mice ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Myotonic dystrophy ; Myotonic Dystrophy - drug therapy ; Myotonic Dystrophy - genetics ; Myotonic Dystrophy - metabolism ; Myotonic Dystrophy - pathology ; Myotonin-Protein Kinase - genetics ; Myotonin-Protein Kinase - metabolism ; Oligodeoxyribonucleotides, Antisense - genetics ; Oligodeoxyribonucleotides, Antisense - pharmacology ; Peptides ; Phenotypes ; Protein kinases ; RNA ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Skeletal muscle</subject><ispartof>The Journal of clinical investigation, 2019-11, Vol.129 (11), p.4739-4744</ispartof><rights>COPYRIGHT 2019 American Society for Clinical Investigation</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019 Klein et al. 2019 Klein et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c653t-255d847dfe3f13ebdfa93fc1117a1198b970d9d3597bb3d0700cf4d20a61cad73</citedby><cites>FETCH-LOGICAL-c653t-255d847dfe3f13ebdfa93fc1117a1198b970d9d3597bb3d0700cf4d20a61cad73</cites><orcidid>0000-0002-3860-7049 ; 0000-0002-2044-1052 ; 0000-0001-8256-7665 ; 0000-0001-7912-4409 ; 0000-0002-3319-1347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819114/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819114/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31479430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03753531$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Arnaud F</creatorcontrib><creatorcontrib>Varela, Miguel A</creatorcontrib><creatorcontrib>Arandel, Ludovic</creatorcontrib><creatorcontrib>Holland, Ashling</creatorcontrib><creatorcontrib>Naouar, Naira</creatorcontrib><creatorcontrib>Arzumanov, Andrey</creatorcontrib><creatorcontrib>Seoane, David</creatorcontrib><creatorcontrib>Revillod, Lucile</creatorcontrib><creatorcontrib>Bassez, Guillaume</creatorcontrib><creatorcontrib>Ferry, Arnaud</creatorcontrib><creatorcontrib>Jauvin, Dominic</creatorcontrib><creatorcontrib>Gourdon, Genevieve</creatorcontrib><creatorcontrib>Puymirat, Jack</creatorcontrib><creatorcontrib>Gait, Michael J</creatorcontrib><creatorcontrib>Furling, Denis</creatorcontrib><creatorcontrib>Wood, Matthew Ja</creatorcontrib><title>Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment with Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient-derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces long-lasting correction with high efficacy of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide conjugates for systemic corrective therapy in DM1.</description><subject>Animals</subject><subject>Arginine</subject><subject>Cell-Penetrating Peptides - pharmacology</subject><subject>Cells, Cultured</subject><subject>Concise Communication</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Myotonic dystrophy</subject><subject>Myotonic Dystrophy - drug therapy</subject><subject>Myotonic Dystrophy - genetics</subject><subject>Myotonic Dystrophy - metabolism</subject><subject>Myotonic Dystrophy - pathology</subject><subject>Myotonin-Protein Kinase - genetics</subject><subject>Myotonin-Protein Kinase - metabolism</subject><subject>Oligodeoxyribonucleotides, Antisense - genetics</subject><subject>Oligodeoxyribonucleotides, Antisense - pharmacology</subject><subject>Peptides</subject><subject>Phenotypes</subject><subject>Protein kinases</subject><subject>RNA</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Skeletal muscle</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk2L2zAQhk1p6Wa3PfQPFEOhsAdvJcuK5UshhLabEtjSr6uQpbGtrSwZSzbNv1-FtGFTcig6CGae9x1pZpLkFUY3GJf5u8_rDc5ZjuiTZIEpZRnLCXuaLBDKcVaVhF0kl97fI4SLghbPkwuCi7IqCFok8xcYglaQSWfvp1YEUKkzunV2kgbcPuVTmN0vSI2zbWaED9q2ab9zwVktU7XzYXRDt0ulG0eQQTubapsOImiwIVMw6jmaSjDGp8KqtNcSXiTPGmE8vPxzXyU_Pn74vr7NtnefNuvVNpNLSkKWU6pYUaoGSIMJ1KoRFWkkjr8WGFesrkqkKkVoVdY1UahESDaFypFYYilUSa6S9wffYap7UDK-aBSGD6PuxbjjTmh-mrG6462b-ZLhCuMiGlwfDLp_ZLerLd_HECkpoQTPOLJvDmwrDHBtGxctZa-95KslqhgtGKORys5QLViI9Z2FRsfwCX9zho9HQezkWcH1iSAyAX6HVkze8823r__P3v08Zd8-YjsQJnTemWk_cX_WVI7O-xGaY-Mw4vuF5ceFjezrxwM6kn83lDwAKxHk-Q</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Klein, Arnaud F</creator><creator>Varela, Miguel A</creator><creator>Arandel, Ludovic</creator><creator>Holland, Ashling</creator><creator>Naouar, Naira</creator><creator>Arzumanov, Andrey</creator><creator>Seoane, David</creator><creator>Revillod, Lucile</creator><creator>Bassez, Guillaume</creator><creator>Ferry, Arnaud</creator><creator>Jauvin, Dominic</creator><creator>Gourdon, Genevieve</creator><creator>Puymirat, Jack</creator><creator>Gait, Michael J</creator><creator>Furling, Denis</creator><creator>Wood, Matthew Ja</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3860-7049</orcidid><orcidid>https://orcid.org/0000-0002-2044-1052</orcidid><orcidid>https://orcid.org/0000-0001-8256-7665</orcidid><orcidid>https://orcid.org/0000-0001-7912-4409</orcidid><orcidid>https://orcid.org/0000-0002-3319-1347</orcidid></search><sort><creationdate>20191101</creationdate><title>Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice</title><author>Klein, Arnaud F ; Varela, Miguel A ; Arandel, Ludovic ; Holland, Ashling ; Naouar, Naira ; Arzumanov, Andrey ; Seoane, David ; Revillod, Lucile ; Bassez, Guillaume ; Ferry, Arnaud ; Jauvin, Dominic ; Gourdon, Genevieve ; Puymirat, Jack ; Gait, Michael J ; Furling, Denis ; Wood, Matthew Ja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c653t-255d847dfe3f13ebdfa93fc1117a1198b970d9d3597bb3d0700cf4d20a61cad73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Arginine</topic><topic>Cell-Penetrating Peptides - pharmacology</topic><topic>Cells, Cultured</topic><topic>Concise Communication</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Myotonic dystrophy</topic><topic>Myotonic Dystrophy - drug therapy</topic><topic>Myotonic Dystrophy - genetics</topic><topic>Myotonic Dystrophy - metabolism</topic><topic>Myotonic Dystrophy - pathology</topic><topic>Myotonin-Protein Kinase - genetics</topic><topic>Myotonin-Protein Kinase - metabolism</topic><topic>Oligodeoxyribonucleotides, Antisense - genetics</topic><topic>Oligodeoxyribonucleotides, Antisense - pharmacology</topic><topic>Peptides</topic><topic>Phenotypes</topic><topic>Protein kinases</topic><topic>RNA</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Arnaud F</creatorcontrib><creatorcontrib>Varela, Miguel A</creatorcontrib><creatorcontrib>Arandel, Ludovic</creatorcontrib><creatorcontrib>Holland, Ashling</creatorcontrib><creatorcontrib>Naouar, Naira</creatorcontrib><creatorcontrib>Arzumanov, Andrey</creatorcontrib><creatorcontrib>Seoane, David</creatorcontrib><creatorcontrib>Revillod, Lucile</creatorcontrib><creatorcontrib>Bassez, Guillaume</creatorcontrib><creatorcontrib>Ferry, Arnaud</creatorcontrib><creatorcontrib>Jauvin, Dominic</creatorcontrib><creatorcontrib>Gourdon, Genevieve</creatorcontrib><creatorcontrib>Puymirat, Jack</creatorcontrib><creatorcontrib>Gait, Michael J</creatorcontrib><creatorcontrib>Furling, Denis</creatorcontrib><creatorcontrib>Wood, Matthew Ja</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Arnaud F</au><au>Varela, Miguel A</au><au>Arandel, Ludovic</au><au>Holland, Ashling</au><au>Naouar, Naira</au><au>Arzumanov, Andrey</au><au>Seoane, David</au><au>Revillod, Lucile</au><au>Bassez, Guillaume</au><au>Ferry, Arnaud</au><au>Jauvin, Dominic</au><au>Gourdon, Genevieve</au><au>Puymirat, Jack</au><au>Gait, Michael J</au><au>Furling, Denis</au><au>Wood, Matthew Ja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>129</volume><issue>11</issue><spage>4739</spage><epage>4744</epage><pages>4739-4744</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment with Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient-derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces long-lasting correction with high efficacy of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide conjugates for systemic corrective therapy in DM1.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>31479430</pmid><doi>10.1172/JCI128205</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3860-7049</orcidid><orcidid>https://orcid.org/0000-0002-2044-1052</orcidid><orcidid>https://orcid.org/0000-0001-8256-7665</orcidid><orcidid>https://orcid.org/0000-0001-7912-4409</orcidid><orcidid>https://orcid.org/0000-0002-3319-1347</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 2019-11, Vol.129 (11), p.4739-4744 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6819114 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Arginine Cell-Penetrating Peptides - pharmacology Cells, Cultured Concise Communication DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Dose-Response Relationship, Drug Genetic aspects Health aspects Human health and pathology Humans Life Sciences Mice Muscle, Skeletal - metabolism Muscle, Skeletal - pathology Myotonic dystrophy Myotonic Dystrophy - drug therapy Myotonic Dystrophy - genetics Myotonic Dystrophy - metabolism Myotonic Dystrophy - pathology Myotonin-Protein Kinase - genetics Myotonin-Protein Kinase - metabolism Oligodeoxyribonucleotides, Antisense - genetics Oligodeoxyribonucleotides, Antisense - pharmacology Peptides Phenotypes Protein kinases RNA RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Skeletal muscle |
title | Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peptide-conjugated%20oligonucleotides%20evoke%20long-lasting%20myotonic%20dystrophy%20correction%20in%20patient-derived%20cells%20and%20mice&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Klein,%20Arnaud%20F&rft.date=2019-11-01&rft.volume=129&rft.issue=11&rft.spage=4739&rft.epage=4744&rft.pages=4739-4744&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI128205&rft_dat=%3Cgale_pubme%3EA609854885%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31479430&rft_galeid=A609854885&rfr_iscdi=true |