Response to Blast-like Shear Stresses Associated with Mild Blast-Induced Brain Injury

Toward the goal of understanding the pathophysiology of mild blast-induced traumatic brain injury and identifying the physical forces associated with the primary injury phase, we developed a system that couples a pneumatic blast to a microfluidic channel to precisely and reproducibly deliver shear t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2019-10, Vol.117 (7), p.1167-1178
Hauptverfasser: Ravin, Rea, Morgan, Nicole Y., Blank, Paul S., Ravin, Nitay, Guerrero-Cazares, Hugo, Quinones-Hinojosa, Alfredo, Zimmerberg, Joshua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1178
container_issue 7
container_start_page 1167
container_title Biophysical journal
container_volume 117
creator Ravin, Rea
Morgan, Nicole Y.
Blank, Paul S.
Ravin, Nitay
Guerrero-Cazares, Hugo
Quinones-Hinojosa, Alfredo
Zimmerberg, Joshua
description Toward the goal of understanding the pathophysiology of mild blast-induced traumatic brain injury and identifying the physical forces associated with the primary injury phase, we developed a system that couples a pneumatic blast to a microfluidic channel to precisely and reproducibly deliver shear transients to dissociated human central nervous system (CNS) cells, on a timescale comparable to an explosive blast but with minimal pressure transients. Using fluorescent beads, we have characterized the shear transients experienced by the cells and demonstrate that the system is capable of accurately and reproducibly delivering uniform shear transients with minimal pressure across the cell culture volume. This system is compatible with high-resolution, time-lapse optical microscopy. Using this system, we demonstrate that blast-like shear transients produced with minimal pressure transients and submillisecond rise times activate calcium responses in dissociated human CNS cultures. Cells respond with increased cytosolic free calcium to a threshold shear stress between 8 and 21 Pa; the propagation of this calcium response is a result of purinergic signaling. We propose that this system models, in vitro, the fundamental injury wave produced by shear forces consequent to blast shock waves passing through density inhomogeneity in human CNS cells.
doi_str_mv 10.1016/j.bpj.2019.07.052
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6818442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349519306952</els_id><sourcerecordid>2287524335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-202530470e41159efa98df25c49182e03e2ca70b213b2638c35ad7f9dfa16bf53</originalsourceid><addsrcrecordid>eNp9UU1P3DAUtKqiskB_ABeUYy9Jn7_yISQkQKVdiaoSlLPlOC-sQzbe2g4V_75e7RaVS09Pmjcz72mGkFMKBQVafh6KdjMUDGhTQFWAZO_IgkrBcoC6fE8WAFDmXDTykByFMABQJoF-IIecJlCIakEe7jBs3BQwiy67GnWI-WifMLtfofbZffQYAobsMgRnrI7YZb9tXGXf7djt6cupm03Cr7y2U7achtm_nJCDXo8BP-7nMXm4-fLz-lt---Pr8vryNjdC0pgzYJKDqAAFpbLBXjd11zNpRENrhsCRGV1ByyhvWclrw6Xuqr7pek3Ltpf8mFzsfDdzu8bO4BS9HtXG27X2L8ppq95uJrtSj-5ZlTWthWDJ4NPewLtfM4ao1jYYHEc9oZuDYqyuJBOcb2_RHdV4F4LH_vUMBbWtQw0q1aG2dSioVKojac7-_e9V8Tf_RDjfETCl9GzRq2AsTilP69FE1Tn7H_s_70qbZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287524335</pqid></control><display><type>article</type><title>Response to Blast-like Shear Stresses Associated with Mild Blast-Induced Brain Injury</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Ravin, Rea ; Morgan, Nicole Y. ; Blank, Paul S. ; Ravin, Nitay ; Guerrero-Cazares, Hugo ; Quinones-Hinojosa, Alfredo ; Zimmerberg, Joshua</creator><creatorcontrib>Ravin, Rea ; Morgan, Nicole Y. ; Blank, Paul S. ; Ravin, Nitay ; Guerrero-Cazares, Hugo ; Quinones-Hinojosa, Alfredo ; Zimmerberg, Joshua</creatorcontrib><description>Toward the goal of understanding the pathophysiology of mild blast-induced traumatic brain injury and identifying the physical forces associated with the primary injury phase, we developed a system that couples a pneumatic blast to a microfluidic channel to precisely and reproducibly deliver shear transients to dissociated human central nervous system (CNS) cells, on a timescale comparable to an explosive blast but with minimal pressure transients. Using fluorescent beads, we have characterized the shear transients experienced by the cells and demonstrate that the system is capable of accurately and reproducibly delivering uniform shear transients with minimal pressure across the cell culture volume. This system is compatible with high-resolution, time-lapse optical microscopy. Using this system, we demonstrate that blast-like shear transients produced with minimal pressure transients and submillisecond rise times activate calcium responses in dissociated human CNS cultures. Cells respond with increased cytosolic free calcium to a threshold shear stress between 8 and 21 Pa; the propagation of this calcium response is a result of purinergic signaling. We propose that this system models, in vitro, the fundamental injury wave produced by shear forces consequent to blast shock waves passing through density inhomogeneity in human CNS cells.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2019.07.052</identifier><identifier>PMID: 31495447</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Blast Injuries ; Brain Injuries ; Explosions ; Humans ; Lab-On-A-Chip Devices ; Pressure ; Shear Strength ; Stress, Mechanical</subject><ispartof>Biophysical journal, 2019-10, Vol.117 (7), p.1167-1178</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier Inc.</rights><rights>2019. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-202530470e41159efa98df25c49182e03e2ca70b213b2638c35ad7f9dfa16bf53</citedby><cites>FETCH-LOGICAL-c451t-202530470e41159efa98df25c49182e03e2ca70b213b2638c35ad7f9dfa16bf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818442/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349519306952$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31495447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravin, Rea</creatorcontrib><creatorcontrib>Morgan, Nicole Y.</creatorcontrib><creatorcontrib>Blank, Paul S.</creatorcontrib><creatorcontrib>Ravin, Nitay</creatorcontrib><creatorcontrib>Guerrero-Cazares, Hugo</creatorcontrib><creatorcontrib>Quinones-Hinojosa, Alfredo</creatorcontrib><creatorcontrib>Zimmerberg, Joshua</creatorcontrib><title>Response to Blast-like Shear Stresses Associated with Mild Blast-Induced Brain Injury</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Toward the goal of understanding the pathophysiology of mild blast-induced traumatic brain injury and identifying the physical forces associated with the primary injury phase, we developed a system that couples a pneumatic blast to a microfluidic channel to precisely and reproducibly deliver shear transients to dissociated human central nervous system (CNS) cells, on a timescale comparable to an explosive blast but with minimal pressure transients. Using fluorescent beads, we have characterized the shear transients experienced by the cells and demonstrate that the system is capable of accurately and reproducibly delivering uniform shear transients with minimal pressure across the cell culture volume. This system is compatible with high-resolution, time-lapse optical microscopy. Using this system, we demonstrate that blast-like shear transients produced with minimal pressure transients and submillisecond rise times activate calcium responses in dissociated human CNS cultures. Cells respond with increased cytosolic free calcium to a threshold shear stress between 8 and 21 Pa; the propagation of this calcium response is a result of purinergic signaling. We propose that this system models, in vitro, the fundamental injury wave produced by shear forces consequent to blast shock waves passing through density inhomogeneity in human CNS cells.</description><subject>Blast Injuries</subject><subject>Brain Injuries</subject><subject>Explosions</subject><subject>Humans</subject><subject>Lab-On-A-Chip Devices</subject><subject>Pressure</subject><subject>Shear Strength</subject><subject>Stress, Mechanical</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1P3DAUtKqiskB_ABeUYy9Jn7_yISQkQKVdiaoSlLPlOC-sQzbe2g4V_75e7RaVS09Pmjcz72mGkFMKBQVafh6KdjMUDGhTQFWAZO_IgkrBcoC6fE8WAFDmXDTykByFMABQJoF-IIecJlCIakEe7jBs3BQwiy67GnWI-WifMLtfofbZffQYAobsMgRnrI7YZb9tXGXf7djt6cupm03Cr7y2U7achtm_nJCDXo8BP-7nMXm4-fLz-lt---Pr8vryNjdC0pgzYJKDqAAFpbLBXjd11zNpRENrhsCRGV1ByyhvWclrw6Xuqr7pek3Ltpf8mFzsfDdzu8bO4BS9HtXG27X2L8ppq95uJrtSj-5ZlTWthWDJ4NPewLtfM4ao1jYYHEc9oZuDYqyuJBOcb2_RHdV4F4LH_vUMBbWtQw0q1aG2dSioVKojac7-_e9V8Tf_RDjfETCl9GzRq2AsTilP69FE1Tn7H_s_70qbZw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Ravin, Rea</creator><creator>Morgan, Nicole Y.</creator><creator>Blank, Paul S.</creator><creator>Ravin, Nitay</creator><creator>Guerrero-Cazares, Hugo</creator><creator>Quinones-Hinojosa, Alfredo</creator><creator>Zimmerberg, Joshua</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191001</creationdate><title>Response to Blast-like Shear Stresses Associated with Mild Blast-Induced Brain Injury</title><author>Ravin, Rea ; Morgan, Nicole Y. ; Blank, Paul S. ; Ravin, Nitay ; Guerrero-Cazares, Hugo ; Quinones-Hinojosa, Alfredo ; Zimmerberg, Joshua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-202530470e41159efa98df25c49182e03e2ca70b213b2638c35ad7f9dfa16bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Blast Injuries</topic><topic>Brain Injuries</topic><topic>Explosions</topic><topic>Humans</topic><topic>Lab-On-A-Chip Devices</topic><topic>Pressure</topic><topic>Shear Strength</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravin, Rea</creatorcontrib><creatorcontrib>Morgan, Nicole Y.</creatorcontrib><creatorcontrib>Blank, Paul S.</creatorcontrib><creatorcontrib>Ravin, Nitay</creatorcontrib><creatorcontrib>Guerrero-Cazares, Hugo</creatorcontrib><creatorcontrib>Quinones-Hinojosa, Alfredo</creatorcontrib><creatorcontrib>Zimmerberg, Joshua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravin, Rea</au><au>Morgan, Nicole Y.</au><au>Blank, Paul S.</au><au>Ravin, Nitay</au><au>Guerrero-Cazares, Hugo</au><au>Quinones-Hinojosa, Alfredo</au><au>Zimmerberg, Joshua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response to Blast-like Shear Stresses Associated with Mild Blast-Induced Brain Injury</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>117</volume><issue>7</issue><spage>1167</spage><epage>1178</epage><pages>1167-1178</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Toward the goal of understanding the pathophysiology of mild blast-induced traumatic brain injury and identifying the physical forces associated with the primary injury phase, we developed a system that couples a pneumatic blast to a microfluidic channel to precisely and reproducibly deliver shear transients to dissociated human central nervous system (CNS) cells, on a timescale comparable to an explosive blast but with minimal pressure transients. Using fluorescent beads, we have characterized the shear transients experienced by the cells and demonstrate that the system is capable of accurately and reproducibly delivering uniform shear transients with minimal pressure across the cell culture volume. This system is compatible with high-resolution, time-lapse optical microscopy. Using this system, we demonstrate that blast-like shear transients produced with minimal pressure transients and submillisecond rise times activate calcium responses in dissociated human CNS cultures. Cells respond with increased cytosolic free calcium to a threshold shear stress between 8 and 21 Pa; the propagation of this calcium response is a result of purinergic signaling. We propose that this system models, in vitro, the fundamental injury wave produced by shear forces consequent to blast shock waves passing through density inhomogeneity in human CNS cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31495447</pmid><doi>10.1016/j.bpj.2019.07.052</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2019-10, Vol.117 (7), p.1167-1178
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6818442
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Blast Injuries
Brain Injuries
Explosions
Humans
Lab-On-A-Chip Devices
Pressure
Shear Strength
Stress, Mechanical
title Response to Blast-like Shear Stresses Associated with Mild Blast-Induced Brain Injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20to%20Blast-like%20Shear%20Stresses%20Associated%20with%20Mild%20Blast-Induced%20Brain%20Injury&rft.jtitle=Biophysical%20journal&rft.au=Ravin,%20Rea&rft.date=2019-10-01&rft.volume=117&rft.issue=7&rft.spage=1167&rft.epage=1178&rft.pages=1167-1178&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2019.07.052&rft_dat=%3Cproquest_pubme%3E2287524335%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287524335&rft_id=info:pmid/31495447&rft_els_id=S0006349519306952&rfr_iscdi=true