Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme
Correlated motions of proteins are critical to function, but these features are difficult to resolve using traditional structure determination techniques. Time-resolved X-ray methods hold promise for addressing this challenge, but have relied on the exploitation of exotic protein photoactivity, and...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2019-11, Vol.11 (11), p.1058-1066 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1066 |
---|---|
container_issue | 11 |
container_start_page | 1058 |
container_title | Nature chemistry |
container_volume | 11 |
creator | Thompson, Michael C. Barad, Benjamin A. Wolff, Alexander M. Sun Cho, Hyun Schotte, Friedrich Schwarz, Daniel M. C. Anfinrud, Philip Fraser, James S. |
description | Correlated motions of proteins are critical to function, but these features are difficult to resolve using traditional structure determination techniques. Time-resolved X-ray methods hold promise for addressing this challenge, but have relied on the exploitation of exotic protein photoactivity, and are therefore not generalizable. Temperature jumps, through thermal excitation of the solvent, have been utilized to study protein dynamics using spectroscopic techniques, but their implementation in X-ray scattering experiments has been limited. Here, we perform temperature-jump small- and wide-angle X-ray scattering measurements on a dynamic enzyme, cyclophilin A, demonstrating that these experiments are able to capture functional intramolecular protein dynamics on the microsecond timescale. We show that cyclophilin A displays rich dynamics following a temperature jump, and use the resulting time-resolved signal to assess the kinetics of conformational changes. Two relaxation processes are resolved: a fast process is related to surface loop motions, and a slower process is related to motions in the core of the protein that are critical for catalytic turnover.
Understanding how structural dynamics contribute to protein function is a longstanding challenge in structural biology. Now, time-resolved X-ray solution scattering following an infrared laser-induced temperature jump has been used to probe functional, intramolecular motions in the dynamic enzyme cyclophilin A. |
doi_str_mv | 10.1038/s41557-019-0329-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6815256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309514871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-8ad3a7116b1905f58d72a7c5ce3a6e4f96bc497a9f2ccd036a5e40b409d9ff3b3</originalsourceid><addsrcrecordid>eNp1kcuL1TAUh4MozkP_ADcSdDObatK8mo0ggy8YcDOiu5CmpzO5tElN0oHrX28uHa8PcJVAvvM7OedD6Bklryhh3evMqRCqIVQ3hLW6YQ_QKVVCNJxx_fB4Z-QEneW8I0QKRuVjdMKoaFXH1Sn6eg3zAsmWNUGzW-cF5zitxceAvzXJ7nF2thRIPtzgBHdgp4wHn4sPruA5HsCMfcAWD_tgZ-8whB_7GZ6gR2Nl4en9eY6-vH93ffmxufr84dPl26vGSUJK09mBWUWp7KkmYhTdoFqrnHDArAQ-atk7rpXVY-vcQJi0AjjpOdGDHkfWs3P0Zstd1n6GwUEoyU5mSX62aW-i9ebvl-BvzU28M7KrOxCyBrzYAmIdymTnC7hbF0MAVwwVijHNK3Rx3yXF7yvkYmafHUyTDRDXbNpWt7qTSpOKvvwH3cU1hboD0zKiBeWdopWiG-VSzDnBePwxJebg1mxuTXVrDm4NqzXP_xz1WPFLZgXaDcjLwRek363_n_oTGYywrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309514871</pqid></control><display><type>article</type><title>Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Thompson, Michael C. ; Barad, Benjamin A. ; Wolff, Alexander M. ; Sun Cho, Hyun ; Schotte, Friedrich ; Schwarz, Daniel M. C. ; Anfinrud, Philip ; Fraser, James S.</creator><creatorcontrib>Thompson, Michael C. ; Barad, Benjamin A. ; Wolff, Alexander M. ; Sun Cho, Hyun ; Schotte, Friedrich ; Schwarz, Daniel M. C. ; Anfinrud, Philip ; Fraser, James S. ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Correlated motions of proteins are critical to function, but these features are difficult to resolve using traditional structure determination techniques. Time-resolved X-ray methods hold promise for addressing this challenge, but have relied on the exploitation of exotic protein photoactivity, and are therefore not generalizable. Temperature jumps, through thermal excitation of the solvent, have been utilized to study protein dynamics using spectroscopic techniques, but their implementation in X-ray scattering experiments has been limited. Here, we perform temperature-jump small- and wide-angle X-ray scattering measurements on a dynamic enzyme, cyclophilin A, demonstrating that these experiments are able to capture functional intramolecular protein dynamics on the microsecond timescale. We show that cyclophilin A displays rich dynamics following a temperature jump, and use the resulting time-resolved signal to assess the kinetics of conformational changes. Two relaxation processes are resolved: a fast process is related to surface loop motions, and a slower process is related to motions in the core of the protein that are critical for catalytic turnover.
Understanding how structural dynamics contribute to protein function is a longstanding challenge in structural biology. Now, time-resolved X-ray solution scattering following an infrared laser-induced temperature jump has been used to probe functional, intramolecular motions in the dynamic enzyme cyclophilin A.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-019-0329-3</identifier><identifier>PMID: 31527847</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/535/1261 ; 631/57/2272/1590 ; 639/638/440/56 ; 639/638/440/950 ; Analytical Chemistry ; Biocatalysis ; Biochemistry ; Biophysical chemistry ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cyclophilin A - chemistry ; Cyclophilin A - metabolism ; Enzymes ; Humans ; Inorganic Chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; kinetics ; Models, Molecular ; Organic Chemistry ; Physical Chemistry ; Proteins ; Reaction kinetics ; reaction kinetics and dynamics ; SAXS ; Scattering, Radiation ; Signal processing ; Solutions ; Temperature ; Temperature effects ; X-ray scattering ; X-Rays</subject><ispartof>Nature chemistry, 2019-11, Vol.11 (11), p.1058-1066</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-8ad3a7116b1905f58d72a7c5ce3a6e4f96bc497a9f2ccd036a5e40b409d9ff3b3</citedby><cites>FETCH-LOGICAL-c600t-8ad3a7116b1905f58d72a7c5ce3a6e4f96bc497a9f2ccd036a5e40b409d9ff3b3</cites><orcidid>0000-0002-5756-5710 ; 0000-0002-5080-2859 ; 0000000257565710 ; 0000000250802859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-019-0329-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-019-0329-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31527847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1573394$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Michael C.</creatorcontrib><creatorcontrib>Barad, Benjamin A.</creatorcontrib><creatorcontrib>Wolff, Alexander M.</creatorcontrib><creatorcontrib>Sun Cho, Hyun</creatorcontrib><creatorcontrib>Schotte, Friedrich</creatorcontrib><creatorcontrib>Schwarz, Daniel M. C.</creatorcontrib><creatorcontrib>Anfinrud, Philip</creatorcontrib><creatorcontrib>Fraser, James S.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Correlated motions of proteins are critical to function, but these features are difficult to resolve using traditional structure determination techniques. Time-resolved X-ray methods hold promise for addressing this challenge, but have relied on the exploitation of exotic protein photoactivity, and are therefore not generalizable. Temperature jumps, through thermal excitation of the solvent, have been utilized to study protein dynamics using spectroscopic techniques, but their implementation in X-ray scattering experiments has been limited. Here, we perform temperature-jump small- and wide-angle X-ray scattering measurements on a dynamic enzyme, cyclophilin A, demonstrating that these experiments are able to capture functional intramolecular protein dynamics on the microsecond timescale. We show that cyclophilin A displays rich dynamics following a temperature jump, and use the resulting time-resolved signal to assess the kinetics of conformational changes. Two relaxation processes are resolved: a fast process is related to surface loop motions, and a slower process is related to motions in the core of the protein that are critical for catalytic turnover.
Understanding how structural dynamics contribute to protein function is a longstanding challenge in structural biology. Now, time-resolved X-ray solution scattering following an infrared laser-induced temperature jump has been used to probe functional, intramolecular motions in the dynamic enzyme cyclophilin A.</description><subject>631/535/1261</subject><subject>631/57/2272/1590</subject><subject>639/638/440/56</subject><subject>639/638/440/950</subject><subject>Analytical Chemistry</subject><subject>Biocatalysis</subject><subject>Biochemistry</subject><subject>Biophysical chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cyclophilin A - chemistry</subject><subject>Cyclophilin A - metabolism</subject><subject>Enzymes</subject><subject>Humans</subject><subject>Inorganic Chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>kinetics</subject><subject>Models, Molecular</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Proteins</subject><subject>Reaction kinetics</subject><subject>reaction kinetics and dynamics</subject><subject>SAXS</subject><subject>Scattering, Radiation</subject><subject>Signal processing</subject><subject>Solutions</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>X-ray scattering</subject><subject>X-Rays</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kcuL1TAUh4MozkP_ADcSdDObatK8mo0ggy8YcDOiu5CmpzO5tElN0oHrX28uHa8PcJVAvvM7OedD6Bklryhh3evMqRCqIVQ3hLW6YQ_QKVVCNJxx_fB4Z-QEneW8I0QKRuVjdMKoaFXH1Sn6eg3zAsmWNUGzW-cF5zitxceAvzXJ7nF2thRIPtzgBHdgp4wHn4sPruA5HsCMfcAWD_tgZ-8whB_7GZ6gR2Nl4en9eY6-vH93ffmxufr84dPl26vGSUJK09mBWUWp7KkmYhTdoFqrnHDArAQ-atk7rpXVY-vcQJi0AjjpOdGDHkfWs3P0Zstd1n6GwUEoyU5mSX62aW-i9ebvl-BvzU28M7KrOxCyBrzYAmIdymTnC7hbF0MAVwwVijHNK3Rx3yXF7yvkYmafHUyTDRDXbNpWt7qTSpOKvvwH3cU1hboD0zKiBeWdopWiG-VSzDnBePwxJebg1mxuTXVrDm4NqzXP_xz1WPFLZgXaDcjLwRek363_n_oTGYywrg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Thompson, Michael C.</creator><creator>Barad, Benjamin A.</creator><creator>Wolff, Alexander M.</creator><creator>Sun Cho, Hyun</creator><creator>Schotte, Friedrich</creator><creator>Schwarz, Daniel M. C.</creator><creator>Anfinrud, Philip</creator><creator>Fraser, James S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5756-5710</orcidid><orcidid>https://orcid.org/0000-0002-5080-2859</orcidid><orcidid>https://orcid.org/0000000257565710</orcidid><orcidid>https://orcid.org/0000000250802859</orcidid></search><sort><creationdate>20191101</creationdate><title>Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme</title><author>Thompson, Michael C. ; Barad, Benjamin A. ; Wolff, Alexander M. ; Sun Cho, Hyun ; Schotte, Friedrich ; Schwarz, Daniel M. C. ; Anfinrud, Philip ; Fraser, James S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-8ad3a7116b1905f58d72a7c5ce3a6e4f96bc497a9f2ccd036a5e40b409d9ff3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/535/1261</topic><topic>631/57/2272/1590</topic><topic>639/638/440/56</topic><topic>639/638/440/950</topic><topic>Analytical Chemistry</topic><topic>Biocatalysis</topic><topic>Biochemistry</topic><topic>Biophysical chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cyclophilin A - chemistry</topic><topic>Cyclophilin A - metabolism</topic><topic>Enzymes</topic><topic>Humans</topic><topic>Inorganic Chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>kinetics</topic><topic>Models, Molecular</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Proteins</topic><topic>Reaction kinetics</topic><topic>reaction kinetics and dynamics</topic><topic>SAXS</topic><topic>Scattering, Radiation</topic><topic>Signal processing</topic><topic>Solutions</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>X-ray scattering</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Michael C.</creatorcontrib><creatorcontrib>Barad, Benjamin A.</creatorcontrib><creatorcontrib>Wolff, Alexander M.</creatorcontrib><creatorcontrib>Sun Cho, Hyun</creatorcontrib><creatorcontrib>Schotte, Friedrich</creatorcontrib><creatorcontrib>Schwarz, Daniel M. C.</creatorcontrib><creatorcontrib>Anfinrud, Philip</creatorcontrib><creatorcontrib>Fraser, James S.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Michael C.</au><au>Barad, Benjamin A.</au><au>Wolff, Alexander M.</au><au>Sun Cho, Hyun</au><au>Schotte, Friedrich</au><au>Schwarz, Daniel M. C.</au><au>Anfinrud, Philip</au><au>Fraser, James S.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>11</volume><issue>11</issue><spage>1058</spage><epage>1066</epage><pages>1058-1066</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Correlated motions of proteins are critical to function, but these features are difficult to resolve using traditional structure determination techniques. Time-resolved X-ray methods hold promise for addressing this challenge, but have relied on the exploitation of exotic protein photoactivity, and are therefore not generalizable. Temperature jumps, through thermal excitation of the solvent, have been utilized to study protein dynamics using spectroscopic techniques, but their implementation in X-ray scattering experiments has been limited. Here, we perform temperature-jump small- and wide-angle X-ray scattering measurements on a dynamic enzyme, cyclophilin A, demonstrating that these experiments are able to capture functional intramolecular protein dynamics on the microsecond timescale. We show that cyclophilin A displays rich dynamics following a temperature jump, and use the resulting time-resolved signal to assess the kinetics of conformational changes. Two relaxation processes are resolved: a fast process is related to surface loop motions, and a slower process is related to motions in the core of the protein that are critical for catalytic turnover.
Understanding how structural dynamics contribute to protein function is a longstanding challenge in structural biology. Now, time-resolved X-ray solution scattering following an infrared laser-induced temperature jump has been used to probe functional, intramolecular motions in the dynamic enzyme cyclophilin A.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31527847</pmid><doi>10.1038/s41557-019-0329-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5756-5710</orcidid><orcidid>https://orcid.org/0000-0002-5080-2859</orcidid><orcidid>https://orcid.org/0000000257565710</orcidid><orcidid>https://orcid.org/0000000250802859</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2019-11, Vol.11 (11), p.1058-1066 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6815256 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/535/1261 631/57/2272/1590 639/638/440/56 639/638/440/950 Analytical Chemistry Biocatalysis Biochemistry Biophysical chemistry Chemistry Chemistry and Materials Science Chemistry/Food Science Cyclophilin A - chemistry Cyclophilin A - metabolism Enzymes Humans Inorganic Chemistry INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY kinetics Models, Molecular Organic Chemistry Physical Chemistry Proteins Reaction kinetics reaction kinetics and dynamics SAXS Scattering, Radiation Signal processing Solutions Temperature Temperature effects X-ray scattering X-Rays |
title | Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-jump%20solution%20X-ray%20scattering%20reveals%20distinct%20motions%20in%20a%20dynamic%20enzyme&rft.jtitle=Nature%20chemistry&rft.au=Thompson,%20Michael%20C.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-11-01&rft.volume=11&rft.issue=11&rft.spage=1058&rft.epage=1066&rft.pages=1058-1066&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-019-0329-3&rft_dat=%3Cproquest_pubme%3E2309514871%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309514871&rft_id=info:pmid/31527847&rfr_iscdi=true |