Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase
Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approache...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2019-11, Vol.11 (11), p.972-980 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 980 |
---|---|
container_issue | 11 |
container_start_page | 972 |
container_title | Nature chemistry |
container_volume | 11 |
creator | Dan, Qingyun Newmister, Sean A. Klas, Kimberly R. Fraley, Amy E. McAfoos, Timothy J. Somoza, Amber D. Sunderhaus, James D. Ye, Ying Shende, Vikram V. Yu, Fengan Sanders, Jacob N. Brown, W. Clay Zhao, Le Paton, Robert S. Houk, K. N. Smith, Janet L. Sherman, David H. Williams, Robert M. |
description | Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approaches. These include a biomimetic total synthesis to access the natural alkaloid and biosynthetic intermediates in racemic form and in vitro enzymatic reconstitution to provide access to the natural antipode (+)-malbrancheamide. Reductive cleavage of an
l
-Pro–
l
-Trp dipeptide from the MalG non-ribosomal peptide synthetase (NRPS) followed by reverse prenylation and a cascade of post-NRPS reactions culminates in an intramolecular [4+2] hetero-Diels–Alder (IMDA) cyclization to furnish the bicyclo[2.2.2]diazaoctane scaffold. Enzymatic assembly of optically pure (+)-premalbrancheamide involves an unexpected zwitterionic intermediate where MalC catalyses enantioselective cycloaddition as a bifunctional NADPH-dependent reductase/Diels–Alderase. The crystal structures of substrate and product complexes together with site-directed mutagenesis and molecular dynamics simulations demonstrate how MalC and PhqE (its homologue from the paraherquamide pathway) catalyse diastereo- and enantioselective cyclization in the construction of this important class of secondary metabolites.
The complete biosynthesis of the fungal indole alkaloid malbrancheamide, which culminates in an intramolecular [4+2] hetero-Diels–Alder cyclization to produce the bicyclo[2.2.2]diazaoctane scaffold, has now been discovered. Chemical synthesis and protein structural analysis were used to provide mechanistic insight into this enzyme-dependent diastereo- and enantioselective cycloaddition. |
doi_str_mv | 10.1038/s41557-019-0326-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6815239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309514812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-86bffe71c5d7f39ff13ad0bc383918c8228db12da996b789b23504d5f963e5df3</originalsourceid><addsrcrecordid>eNp1kc9uFSEUxonR2Fp9ADdmouux_BkY2Jg01apJEze6RgYOc6kUKsw0cec7-IY-idxMverCFXDO7_vOCR9CTwl-STCTp3UgnI89JqrHjIpe3EPHZOS8H9ig7h_uDB-hR7VeYSw4I-IhOmKED1KI8Rh9vljTbGIXkssROhO_mJiD66aQZ0hQQ-2WXcnrvOvgNsd1CTl12XemEX5Ndv9u8gJutYupcPo6QKw_v_84iw5KKzxGD7yJFZ7cnSfo08Wbj-fv-ssPb9-fn132lrNh6aWYvIeRWO5Gz5T3hBmHJ8skU0RaSal0E6HOKCWmUaqJMo4Hx70SDLjz7AS92nxv1ukanIW0FBP1TQnXpnzT2QT9byeFnZ7zrRaScMpUM3i-GeS6BF1tWMDubE4J7KIJH1ljGvTibkrJX1eoi77Ka2k_UDVlWHEySEIbRTbKllxrAX9Yg2C9T05vyemWnN4np0XTPPt7_4Pid1QNoBtQWyvNUP6M_r_rL5jNptU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309514812</pqid></control><display><type>article</type><title>Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dan, Qingyun ; Newmister, Sean A. ; Klas, Kimberly R. ; Fraley, Amy E. ; McAfoos, Timothy J. ; Somoza, Amber D. ; Sunderhaus, James D. ; Ye, Ying ; Shende, Vikram V. ; Yu, Fengan ; Sanders, Jacob N. ; Brown, W. Clay ; Zhao, Le ; Paton, Robert S. ; Houk, K. N. ; Smith, Janet L. ; Sherman, David H. ; Williams, Robert M.</creator><creatorcontrib>Dan, Qingyun ; Newmister, Sean A. ; Klas, Kimberly R. ; Fraley, Amy E. ; McAfoos, Timothy J. ; Somoza, Amber D. ; Sunderhaus, James D. ; Ye, Ying ; Shende, Vikram V. ; Yu, Fengan ; Sanders, Jacob N. ; Brown, W. Clay ; Zhao, Le ; Paton, Robert S. ; Houk, K. N. ; Smith, Janet L. ; Sherman, David H. ; Williams, Robert M. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approaches. These include a biomimetic total synthesis to access the natural alkaloid and biosynthetic intermediates in racemic form and in vitro enzymatic reconstitution to provide access to the natural antipode (+)-malbrancheamide. Reductive cleavage of an
l
-Pro–
l
-Trp dipeptide from the MalG non-ribosomal peptide synthetase (NRPS) followed by reverse prenylation and a cascade of post-NRPS reactions culminates in an intramolecular [4+2] hetero-Diels–Alder (IMDA) cyclization to furnish the bicyclo[2.2.2]diazaoctane scaffold. Enzymatic assembly of optically pure (+)-premalbrancheamide involves an unexpected zwitterionic intermediate where MalC catalyses enantioselective cycloaddition as a bifunctional NADPH-dependent reductase/Diels–Alderase. The crystal structures of substrate and product complexes together with site-directed mutagenesis and molecular dynamics simulations demonstrate how MalC and PhqE (its homologue from the paraherquamide pathway) catalyse diastereo- and enantioselective cyclization in the construction of this important class of secondary metabolites.
The complete biosynthesis of the fungal indole alkaloid malbrancheamide, which culminates in an intramolecular [4+2] hetero-Diels–Alder cyclization to produce the bicyclo[2.2.2]diazaoctane scaffold, has now been discovered. Chemical synthesis and protein structural analysis were used to provide mechanistic insight into this enzyme-dependent diastereo- and enantioselective cycloaddition.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-019-0326-6</identifier><identifier>PMID: 31548667</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/535/1266 ; 631/92/173 ; 639/638/309/606 ; 639/638/549/974 ; 639/638/60 ; Alkaloids ; Analytical Chemistry ; Anthelmintic agents ; Antiparasitic agents ; Ascomycota - chemistry ; Biocatalysis ; Biochemistry ; Biomimetic synthesis ; Biomimetics ; Biosynthesis ; Calcium-binding protein ; Calmodulin ; Cascade chemical reactions ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; computational chemistry ; Crystal structure ; Cycloaddition ; Cycloaddition Reaction ; Enantiomers ; enzyme mechanisms ; Enzymes ; Evolution ; Homology ; Indole Alkaloids - chemistry ; Indole Alkaloids - metabolism ; Indoles ; Inorganic Chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Intermediates ; Metabolites ; Models, Molecular ; Molecular dynamics ; Molecular Structure ; NADP ; Natural products ; Organic Chemistry ; Oxidoreductases - metabolism ; Peptides ; Physical Chemistry ; Reductase ; Reductases ; Secondary metabolites ; Site-directed mutagenesis ; Substrates ; x-ray crystallography</subject><ispartof>Nature chemistry, 2019-11, Vol.11 (11), p.972-980</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-86bffe71c5d7f39ff13ad0bc383918c8228db12da996b789b23504d5f963e5df3</citedby><cites>FETCH-LOGICAL-c534t-86bffe71c5d7f39ff13ad0bc383918c8228db12da996b789b23504d5f963e5df3</cites><orcidid>0000-0002-0664-9228 ; 0000-0001-8334-3647 ; 0000-0002-0104-4166 ; 0000-0002-3110-9450 ; 0000-0002-7826-6453 ; 0000-0002-9623-7779 ; 0000000206649228 ; 0000000296237779 ; 0000000231109450 ; 0000000278266453 ; 0000000183343647 ; 0000000201044166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-019-0326-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-019-0326-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31548667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1573393$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dan, Qingyun</creatorcontrib><creatorcontrib>Newmister, Sean A.</creatorcontrib><creatorcontrib>Klas, Kimberly R.</creatorcontrib><creatorcontrib>Fraley, Amy E.</creatorcontrib><creatorcontrib>McAfoos, Timothy J.</creatorcontrib><creatorcontrib>Somoza, Amber D.</creatorcontrib><creatorcontrib>Sunderhaus, James D.</creatorcontrib><creatorcontrib>Ye, Ying</creatorcontrib><creatorcontrib>Shende, Vikram V.</creatorcontrib><creatorcontrib>Yu, Fengan</creatorcontrib><creatorcontrib>Sanders, Jacob N.</creatorcontrib><creatorcontrib>Brown, W. Clay</creatorcontrib><creatorcontrib>Zhao, Le</creatorcontrib><creatorcontrib>Paton, Robert S.</creatorcontrib><creatorcontrib>Houk, K. N.</creatorcontrib><creatorcontrib>Smith, Janet L.</creatorcontrib><creatorcontrib>Sherman, David H.</creatorcontrib><creatorcontrib>Williams, Robert M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approaches. These include a biomimetic total synthesis to access the natural alkaloid and biosynthetic intermediates in racemic form and in vitro enzymatic reconstitution to provide access to the natural antipode (+)-malbrancheamide. Reductive cleavage of an
l
-Pro–
l
-Trp dipeptide from the MalG non-ribosomal peptide synthetase (NRPS) followed by reverse prenylation and a cascade of post-NRPS reactions culminates in an intramolecular [4+2] hetero-Diels–Alder (IMDA) cyclization to furnish the bicyclo[2.2.2]diazaoctane scaffold. Enzymatic assembly of optically pure (+)-premalbrancheamide involves an unexpected zwitterionic intermediate where MalC catalyses enantioselective cycloaddition as a bifunctional NADPH-dependent reductase/Diels–Alderase. The crystal structures of substrate and product complexes together with site-directed mutagenesis and molecular dynamics simulations demonstrate how MalC and PhqE (its homologue from the paraherquamide pathway) catalyse diastereo- and enantioselective cyclization in the construction of this important class of secondary metabolites.
The complete biosynthesis of the fungal indole alkaloid malbrancheamide, which culminates in an intramolecular [4+2] hetero-Diels–Alder cyclization to produce the bicyclo[2.2.2]diazaoctane scaffold, has now been discovered. Chemical synthesis and protein structural analysis were used to provide mechanistic insight into this enzyme-dependent diastereo- and enantioselective cycloaddition.</description><subject>631/45/535/1266</subject><subject>631/92/173</subject><subject>639/638/309/606</subject><subject>639/638/549/974</subject><subject>639/638/60</subject><subject>Alkaloids</subject><subject>Analytical Chemistry</subject><subject>Anthelmintic agents</subject><subject>Antiparasitic agents</subject><subject>Ascomycota - chemistry</subject><subject>Biocatalysis</subject><subject>Biochemistry</subject><subject>Biomimetic synthesis</subject><subject>Biomimetics</subject><subject>Biosynthesis</subject><subject>Calcium-binding protein</subject><subject>Calmodulin</subject><subject>Cascade chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>computational chemistry</subject><subject>Crystal structure</subject><subject>Cycloaddition</subject><subject>Cycloaddition Reaction</subject><subject>Enantiomers</subject><subject>enzyme mechanisms</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Homology</subject><subject>Indole Alkaloids - chemistry</subject><subject>Indole Alkaloids - metabolism</subject><subject>Indoles</subject><subject>Inorganic Chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Intermediates</subject><subject>Metabolites</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular Structure</subject><subject>NADP</subject><subject>Natural products</subject><subject>Organic Chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Peptides</subject><subject>Physical Chemistry</subject><subject>Reductase</subject><subject>Reductases</subject><subject>Secondary metabolites</subject><subject>Site-directed mutagenesis</subject><subject>Substrates</subject><subject>x-ray crystallography</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9uFSEUxonR2Fp9ADdmouux_BkY2Jg01apJEze6RgYOc6kUKsw0cec7-IY-idxMverCFXDO7_vOCR9CTwl-STCTp3UgnI89JqrHjIpe3EPHZOS8H9ig7h_uDB-hR7VeYSw4I-IhOmKED1KI8Rh9vljTbGIXkssROhO_mJiD66aQZ0hQQ-2WXcnrvOvgNsd1CTl12XemEX5Ndv9u8gJutYupcPo6QKw_v_84iw5KKzxGD7yJFZ7cnSfo08Wbj-fv-ssPb9-fn132lrNh6aWYvIeRWO5Gz5T3hBmHJ8skU0RaSal0E6HOKCWmUaqJMo4Hx70SDLjz7AS92nxv1ukanIW0FBP1TQnXpnzT2QT9byeFnZ7zrRaScMpUM3i-GeS6BF1tWMDubE4J7KIJH1ljGvTibkrJX1eoi77Ka2k_UDVlWHEySEIbRTbKllxrAX9Yg2C9T05vyemWnN4np0XTPPt7_4Pid1QNoBtQWyvNUP6M_r_rL5jNptU</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Dan, Qingyun</creator><creator>Newmister, Sean A.</creator><creator>Klas, Kimberly R.</creator><creator>Fraley, Amy E.</creator><creator>McAfoos, Timothy J.</creator><creator>Somoza, Amber D.</creator><creator>Sunderhaus, James D.</creator><creator>Ye, Ying</creator><creator>Shende, Vikram V.</creator><creator>Yu, Fengan</creator><creator>Sanders, Jacob N.</creator><creator>Brown, W. Clay</creator><creator>Zhao, Le</creator><creator>Paton, Robert S.</creator><creator>Houk, K. N.</creator><creator>Smith, Janet L.</creator><creator>Sherman, David H.</creator><creator>Williams, Robert M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0664-9228</orcidid><orcidid>https://orcid.org/0000-0001-8334-3647</orcidid><orcidid>https://orcid.org/0000-0002-0104-4166</orcidid><orcidid>https://orcid.org/0000-0002-3110-9450</orcidid><orcidid>https://orcid.org/0000-0002-7826-6453</orcidid><orcidid>https://orcid.org/0000-0002-9623-7779</orcidid><orcidid>https://orcid.org/0000000206649228</orcidid><orcidid>https://orcid.org/0000000296237779</orcidid><orcidid>https://orcid.org/0000000231109450</orcidid><orcidid>https://orcid.org/0000000278266453</orcidid><orcidid>https://orcid.org/0000000183343647</orcidid><orcidid>https://orcid.org/0000000201044166</orcidid></search><sort><creationdate>20191101</creationdate><title>Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase</title><author>Dan, Qingyun ; Newmister, Sean A. ; Klas, Kimberly R. ; Fraley, Amy E. ; McAfoos, Timothy J. ; Somoza, Amber D. ; Sunderhaus, James D. ; Ye, Ying ; Shende, Vikram V. ; Yu, Fengan ; Sanders, Jacob N. ; Brown, W. Clay ; Zhao, Le ; Paton, Robert S. ; Houk, K. N. ; Smith, Janet L. ; Sherman, David H. ; Williams, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-86bffe71c5d7f39ff13ad0bc383918c8228db12da996b789b23504d5f963e5df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/45/535/1266</topic><topic>631/92/173</topic><topic>639/638/309/606</topic><topic>639/638/549/974</topic><topic>639/638/60</topic><topic>Alkaloids</topic><topic>Analytical Chemistry</topic><topic>Anthelmintic agents</topic><topic>Antiparasitic agents</topic><topic>Ascomycota - chemistry</topic><topic>Biocatalysis</topic><topic>Biochemistry</topic><topic>Biomimetic synthesis</topic><topic>Biomimetics</topic><topic>Biosynthesis</topic><topic>Calcium-binding protein</topic><topic>Calmodulin</topic><topic>Cascade chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>computational chemistry</topic><topic>Crystal structure</topic><topic>Cycloaddition</topic><topic>Cycloaddition Reaction</topic><topic>Enantiomers</topic><topic>enzyme mechanisms</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Homology</topic><topic>Indole Alkaloids - chemistry</topic><topic>Indole Alkaloids - metabolism</topic><topic>Indoles</topic><topic>Inorganic Chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Intermediates</topic><topic>Metabolites</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular Structure</topic><topic>NADP</topic><topic>Natural products</topic><topic>Organic Chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Peptides</topic><topic>Physical Chemistry</topic><topic>Reductase</topic><topic>Reductases</topic><topic>Secondary metabolites</topic><topic>Site-directed mutagenesis</topic><topic>Substrates</topic><topic>x-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dan, Qingyun</creatorcontrib><creatorcontrib>Newmister, Sean A.</creatorcontrib><creatorcontrib>Klas, Kimberly R.</creatorcontrib><creatorcontrib>Fraley, Amy E.</creatorcontrib><creatorcontrib>McAfoos, Timothy J.</creatorcontrib><creatorcontrib>Somoza, Amber D.</creatorcontrib><creatorcontrib>Sunderhaus, James D.</creatorcontrib><creatorcontrib>Ye, Ying</creatorcontrib><creatorcontrib>Shende, Vikram V.</creatorcontrib><creatorcontrib>Yu, Fengan</creatorcontrib><creatorcontrib>Sanders, Jacob N.</creatorcontrib><creatorcontrib>Brown, W. Clay</creatorcontrib><creatorcontrib>Zhao, Le</creatorcontrib><creatorcontrib>Paton, Robert S.</creatorcontrib><creatorcontrib>Houk, K. N.</creatorcontrib><creatorcontrib>Smith, Janet L.</creatorcontrib><creatorcontrib>Sherman, David H.</creatorcontrib><creatorcontrib>Williams, Robert M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dan, Qingyun</au><au>Newmister, Sean A.</au><au>Klas, Kimberly R.</au><au>Fraley, Amy E.</au><au>McAfoos, Timothy J.</au><au>Somoza, Amber D.</au><au>Sunderhaus, James D.</au><au>Ye, Ying</au><au>Shende, Vikram V.</au><au>Yu, Fengan</au><au>Sanders, Jacob N.</au><au>Brown, W. Clay</au><au>Zhao, Le</au><au>Paton, Robert S.</au><au>Houk, K. N.</au><au>Smith, Janet L.</au><au>Sherman, David H.</au><au>Williams, Robert M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>11</volume><issue>11</issue><spage>972</spage><epage>980</epage><pages>972-980</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approaches. These include a biomimetic total synthesis to access the natural alkaloid and biosynthetic intermediates in racemic form and in vitro enzymatic reconstitution to provide access to the natural antipode (+)-malbrancheamide. Reductive cleavage of an
l
-Pro–
l
-Trp dipeptide from the MalG non-ribosomal peptide synthetase (NRPS) followed by reverse prenylation and a cascade of post-NRPS reactions culminates in an intramolecular [4+2] hetero-Diels–Alder (IMDA) cyclization to furnish the bicyclo[2.2.2]diazaoctane scaffold. Enzymatic assembly of optically pure (+)-premalbrancheamide involves an unexpected zwitterionic intermediate where MalC catalyses enantioselective cycloaddition as a bifunctional NADPH-dependent reductase/Diels–Alderase. The crystal structures of substrate and product complexes together with site-directed mutagenesis and molecular dynamics simulations demonstrate how MalC and PhqE (its homologue from the paraherquamide pathway) catalyse diastereo- and enantioselective cyclization in the construction of this important class of secondary metabolites.
The complete biosynthesis of the fungal indole alkaloid malbrancheamide, which culminates in an intramolecular [4+2] hetero-Diels–Alder cyclization to produce the bicyclo[2.2.2]diazaoctane scaffold, has now been discovered. Chemical synthesis and protein structural analysis were used to provide mechanistic insight into this enzyme-dependent diastereo- and enantioselective cycloaddition.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31548667</pmid><doi>10.1038/s41557-019-0326-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0664-9228</orcidid><orcidid>https://orcid.org/0000-0001-8334-3647</orcidid><orcidid>https://orcid.org/0000-0002-0104-4166</orcidid><orcidid>https://orcid.org/0000-0002-3110-9450</orcidid><orcidid>https://orcid.org/0000-0002-7826-6453</orcidid><orcidid>https://orcid.org/0000-0002-9623-7779</orcidid><orcidid>https://orcid.org/0000000206649228</orcidid><orcidid>https://orcid.org/0000000296237779</orcidid><orcidid>https://orcid.org/0000000231109450</orcidid><orcidid>https://orcid.org/0000000278266453</orcidid><orcidid>https://orcid.org/0000000183343647</orcidid><orcidid>https://orcid.org/0000000201044166</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2019-11, Vol.11 (11), p.972-980 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6815239 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/45/535/1266 631/92/173 639/638/309/606 639/638/549/974 639/638/60 Alkaloids Analytical Chemistry Anthelmintic agents Antiparasitic agents Ascomycota - chemistry Biocatalysis Biochemistry Biomimetic synthesis Biomimetics Biosynthesis Calcium-binding protein Calmodulin Cascade chemical reactions Chemistry Chemistry and Materials Science Chemistry/Food Science computational chemistry Crystal structure Cycloaddition Cycloaddition Reaction Enantiomers enzyme mechanisms Enzymes Evolution Homology Indole Alkaloids - chemistry Indole Alkaloids - metabolism Indoles Inorganic Chemistry INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Intermediates Metabolites Models, Molecular Molecular dynamics Molecular Structure NADP Natural products Organic Chemistry Oxidoreductases - metabolism Peptides Physical Chemistry Reductase Reductases Secondary metabolites Site-directed mutagenesis Substrates x-ray crystallography |
title | Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fungal%20indole%20alkaloid%20biogenesis%20through%20evolution%20of%20a%20bifunctional%20reductase/Diels%E2%80%93Alderase&rft.jtitle=Nature%20chemistry&rft.au=Dan,%20Qingyun&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-11-01&rft.volume=11&rft.issue=11&rft.spage=972&rft.epage=980&rft.pages=972-980&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-019-0326-6&rft_dat=%3Cproquest_pubme%3E2309514812%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309514812&rft_id=info:pmid/31548667&rfr_iscdi=true |