Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase

Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approache...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2019-11, Vol.11 (11), p.972-980
Hauptverfasser: Dan, Qingyun, Newmister, Sean A., Klas, Kimberly R., Fraley, Amy E., McAfoos, Timothy J., Somoza, Amber D., Sunderhaus, James D., Ye, Ying, Shende, Vikram V., Yu, Fengan, Sanders, Jacob N., Brown, W. Clay, Zhao, Le, Paton, Robert S., Houk, K. N., Smith, Janet L., Sherman, David H., Williams, Robert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 980
container_issue 11
container_start_page 972
container_title Nature chemistry
container_volume 11
creator Dan, Qingyun
Newmister, Sean A.
Klas, Kimberly R.
Fraley, Amy E.
McAfoos, Timothy J.
Somoza, Amber D.
Sunderhaus, James D.
Ye, Ying
Shende, Vikram V.
Yu, Fengan
Sanders, Jacob N.
Brown, W. Clay
Zhao, Le
Paton, Robert S.
Houk, K. N.
Smith, Janet L.
Sherman, David H.
Williams, Robert M.
description Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approaches. These include a biomimetic total synthesis to access the natural alkaloid and biosynthetic intermediates in racemic form and in vitro enzymatic reconstitution to provide access to the natural antipode (+)-malbrancheamide. Reductive cleavage of an l -Pro– l -Trp dipeptide from the MalG non-ribosomal peptide synthetase (NRPS) followed by reverse prenylation and a cascade of post-NRPS reactions culminates in an intramolecular [4+2] hetero-Diels–Alder (IMDA) cyclization to furnish the bicyclo[2.2.2]diazaoctane scaffold. Enzymatic assembly of optically pure (+)-premalbrancheamide involves an unexpected zwitterionic intermediate where MalC catalyses enantioselective cycloaddition as a bifunctional NADPH-dependent reductase/Diels–Alderase. The crystal structures of substrate and product complexes together with site-directed mutagenesis and molecular dynamics simulations demonstrate how MalC and PhqE (its homologue from the paraherquamide pathway) catalyse diastereo- and enantioselective cyclization in the construction of this important class of secondary metabolites. The complete biosynthesis of the fungal indole alkaloid malbrancheamide, which culminates in an intramolecular [4+2] hetero-Diels–Alder cyclization to produce the bicyclo[2.2.2]diazaoctane scaffold, has now been discovered. Chemical synthesis and protein structural analysis were used to provide mechanistic insight into this enzyme-dependent diastereo- and enantioselective cycloaddition.
doi_str_mv 10.1038/s41557-019-0326-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6815239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309514812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-86bffe71c5d7f39ff13ad0bc383918c8228db12da996b789b23504d5f963e5df3</originalsourceid><addsrcrecordid>eNp1kc9uFSEUxonR2Fp9ADdmouux_BkY2Jg01apJEze6RgYOc6kUKsw0cec7-IY-idxMverCFXDO7_vOCR9CTwl-STCTp3UgnI89JqrHjIpe3EPHZOS8H9ig7h_uDB-hR7VeYSw4I-IhOmKED1KI8Rh9vljTbGIXkssROhO_mJiD66aQZ0hQQ-2WXcnrvOvgNsd1CTl12XemEX5Ndv9u8gJutYupcPo6QKw_v_84iw5KKzxGD7yJFZ7cnSfo08Wbj-fv-ssPb9-fn132lrNh6aWYvIeRWO5Gz5T3hBmHJ8skU0RaSal0E6HOKCWmUaqJMo4Hx70SDLjz7AS92nxv1ukanIW0FBP1TQnXpnzT2QT9byeFnZ7zrRaScMpUM3i-GeS6BF1tWMDubE4J7KIJH1ljGvTibkrJX1eoi77Ka2k_UDVlWHEySEIbRTbKllxrAX9Yg2C9T05vyemWnN4np0XTPPt7_4Pid1QNoBtQWyvNUP6M_r_rL5jNptU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309514812</pqid></control><display><type>article</type><title>Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dan, Qingyun ; Newmister, Sean A. ; Klas, Kimberly R. ; Fraley, Amy E. ; McAfoos, Timothy J. ; Somoza, Amber D. ; Sunderhaus, James D. ; Ye, Ying ; Shende, Vikram V. ; Yu, Fengan ; Sanders, Jacob N. ; Brown, W. Clay ; Zhao, Le ; Paton, Robert S. ; Houk, K. N. ; Smith, Janet L. ; Sherman, David H. ; Williams, Robert M.</creator><creatorcontrib>Dan, Qingyun ; Newmister, Sean A. ; Klas, Kimberly R. ; Fraley, Amy E. ; McAfoos, Timothy J. ; Somoza, Amber D. ; Sunderhaus, James D. ; Ye, Ying ; Shende, Vikram V. ; Yu, Fengan ; Sanders, Jacob N. ; Brown, W. Clay ; Zhao, Le ; Paton, Robert S. ; Houk, K. N. ; Smith, Janet L. ; Sherman, David H. ; Williams, Robert M. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approaches. These include a biomimetic total synthesis to access the natural alkaloid and biosynthetic intermediates in racemic form and in vitro enzymatic reconstitution to provide access to the natural antipode (+)-malbrancheamide. Reductive cleavage of an l -Pro– l -Trp dipeptide from the MalG non-ribosomal peptide synthetase (NRPS) followed by reverse prenylation and a cascade of post-NRPS reactions culminates in an intramolecular [4+2] hetero-Diels–Alder (IMDA) cyclization to furnish the bicyclo[2.2.2]diazaoctane scaffold. Enzymatic assembly of optically pure (+)-premalbrancheamide involves an unexpected zwitterionic intermediate where MalC catalyses enantioselective cycloaddition as a bifunctional NADPH-dependent reductase/Diels–Alderase. The crystal structures of substrate and product complexes together with site-directed mutagenesis and molecular dynamics simulations demonstrate how MalC and PhqE (its homologue from the paraherquamide pathway) catalyse diastereo- and enantioselective cyclization in the construction of this important class of secondary metabolites. The complete biosynthesis of the fungal indole alkaloid malbrancheamide, which culminates in an intramolecular [4+2] hetero-Diels–Alder cyclization to produce the bicyclo[2.2.2]diazaoctane scaffold, has now been discovered. Chemical synthesis and protein structural analysis were used to provide mechanistic insight into this enzyme-dependent diastereo- and enantioselective cycloaddition.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-019-0326-6</identifier><identifier>PMID: 31548667</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/535/1266 ; 631/92/173 ; 639/638/309/606 ; 639/638/549/974 ; 639/638/60 ; Alkaloids ; Analytical Chemistry ; Anthelmintic agents ; Antiparasitic agents ; Ascomycota - chemistry ; Biocatalysis ; Biochemistry ; Biomimetic synthesis ; Biomimetics ; Biosynthesis ; Calcium-binding protein ; Calmodulin ; Cascade chemical reactions ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; computational chemistry ; Crystal structure ; Cycloaddition ; Cycloaddition Reaction ; Enantiomers ; enzyme mechanisms ; Enzymes ; Evolution ; Homology ; Indole Alkaloids - chemistry ; Indole Alkaloids - metabolism ; Indoles ; Inorganic Chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Intermediates ; Metabolites ; Models, Molecular ; Molecular dynamics ; Molecular Structure ; NADP ; Natural products ; Organic Chemistry ; Oxidoreductases - metabolism ; Peptides ; Physical Chemistry ; Reductase ; Reductases ; Secondary metabolites ; Site-directed mutagenesis ; Substrates ; x-ray crystallography</subject><ispartof>Nature chemistry, 2019-11, Vol.11 (11), p.972-980</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-86bffe71c5d7f39ff13ad0bc383918c8228db12da996b789b23504d5f963e5df3</citedby><cites>FETCH-LOGICAL-c534t-86bffe71c5d7f39ff13ad0bc383918c8228db12da996b789b23504d5f963e5df3</cites><orcidid>0000-0002-0664-9228 ; 0000-0001-8334-3647 ; 0000-0002-0104-4166 ; 0000-0002-3110-9450 ; 0000-0002-7826-6453 ; 0000-0002-9623-7779 ; 0000000206649228 ; 0000000296237779 ; 0000000231109450 ; 0000000278266453 ; 0000000183343647 ; 0000000201044166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-019-0326-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-019-0326-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31548667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1573393$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dan, Qingyun</creatorcontrib><creatorcontrib>Newmister, Sean A.</creatorcontrib><creatorcontrib>Klas, Kimberly R.</creatorcontrib><creatorcontrib>Fraley, Amy E.</creatorcontrib><creatorcontrib>McAfoos, Timothy J.</creatorcontrib><creatorcontrib>Somoza, Amber D.</creatorcontrib><creatorcontrib>Sunderhaus, James D.</creatorcontrib><creatorcontrib>Ye, Ying</creatorcontrib><creatorcontrib>Shende, Vikram V.</creatorcontrib><creatorcontrib>Yu, Fengan</creatorcontrib><creatorcontrib>Sanders, Jacob N.</creatorcontrib><creatorcontrib>Brown, W. Clay</creatorcontrib><creatorcontrib>Zhao, Le</creatorcontrib><creatorcontrib>Paton, Robert S.</creatorcontrib><creatorcontrib>Houk, K. N.</creatorcontrib><creatorcontrib>Smith, Janet L.</creatorcontrib><creatorcontrib>Sherman, David H.</creatorcontrib><creatorcontrib>Williams, Robert M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approaches. These include a biomimetic total synthesis to access the natural alkaloid and biosynthetic intermediates in racemic form and in vitro enzymatic reconstitution to provide access to the natural antipode (+)-malbrancheamide. Reductive cleavage of an l -Pro– l -Trp dipeptide from the MalG non-ribosomal peptide synthetase (NRPS) followed by reverse prenylation and a cascade of post-NRPS reactions culminates in an intramolecular [4+2] hetero-Diels–Alder (IMDA) cyclization to furnish the bicyclo[2.2.2]diazaoctane scaffold. Enzymatic assembly of optically pure (+)-premalbrancheamide involves an unexpected zwitterionic intermediate where MalC catalyses enantioselective cycloaddition as a bifunctional NADPH-dependent reductase/Diels–Alderase. The crystal structures of substrate and product complexes together with site-directed mutagenesis and molecular dynamics simulations demonstrate how MalC and PhqE (its homologue from the paraherquamide pathway) catalyse diastereo- and enantioselective cyclization in the construction of this important class of secondary metabolites. The complete biosynthesis of the fungal indole alkaloid malbrancheamide, which culminates in an intramolecular [4+2] hetero-Diels–Alder cyclization to produce the bicyclo[2.2.2]diazaoctane scaffold, has now been discovered. Chemical synthesis and protein structural analysis were used to provide mechanistic insight into this enzyme-dependent diastereo- and enantioselective cycloaddition.</description><subject>631/45/535/1266</subject><subject>631/92/173</subject><subject>639/638/309/606</subject><subject>639/638/549/974</subject><subject>639/638/60</subject><subject>Alkaloids</subject><subject>Analytical Chemistry</subject><subject>Anthelmintic agents</subject><subject>Antiparasitic agents</subject><subject>Ascomycota - chemistry</subject><subject>Biocatalysis</subject><subject>Biochemistry</subject><subject>Biomimetic synthesis</subject><subject>Biomimetics</subject><subject>Biosynthesis</subject><subject>Calcium-binding protein</subject><subject>Calmodulin</subject><subject>Cascade chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>computational chemistry</subject><subject>Crystal structure</subject><subject>Cycloaddition</subject><subject>Cycloaddition Reaction</subject><subject>Enantiomers</subject><subject>enzyme mechanisms</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Homology</subject><subject>Indole Alkaloids - chemistry</subject><subject>Indole Alkaloids - metabolism</subject><subject>Indoles</subject><subject>Inorganic Chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Intermediates</subject><subject>Metabolites</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular Structure</subject><subject>NADP</subject><subject>Natural products</subject><subject>Organic Chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Peptides</subject><subject>Physical Chemistry</subject><subject>Reductase</subject><subject>Reductases</subject><subject>Secondary metabolites</subject><subject>Site-directed mutagenesis</subject><subject>Substrates</subject><subject>x-ray crystallography</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9uFSEUxonR2Fp9ADdmouux_BkY2Jg01apJEze6RgYOc6kUKsw0cec7-IY-idxMverCFXDO7_vOCR9CTwl-STCTp3UgnI89JqrHjIpe3EPHZOS8H9ig7h_uDB-hR7VeYSw4I-IhOmKED1KI8Rh9vljTbGIXkssROhO_mJiD66aQZ0hQQ-2WXcnrvOvgNsd1CTl12XemEX5Ndv9u8gJutYupcPo6QKw_v_84iw5KKzxGD7yJFZ7cnSfo08Wbj-fv-ssPb9-fn132lrNh6aWYvIeRWO5Gz5T3hBmHJ8skU0RaSal0E6HOKCWmUaqJMo4Hx70SDLjz7AS92nxv1ukanIW0FBP1TQnXpnzT2QT9byeFnZ7zrRaScMpUM3i-GeS6BF1tWMDubE4J7KIJH1ljGvTibkrJX1eoi77Ka2k_UDVlWHEySEIbRTbKllxrAX9Yg2C9T05vyemWnN4np0XTPPt7_4Pid1QNoBtQWyvNUP6M_r_rL5jNptU</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Dan, Qingyun</creator><creator>Newmister, Sean A.</creator><creator>Klas, Kimberly R.</creator><creator>Fraley, Amy E.</creator><creator>McAfoos, Timothy J.</creator><creator>Somoza, Amber D.</creator><creator>Sunderhaus, James D.</creator><creator>Ye, Ying</creator><creator>Shende, Vikram V.</creator><creator>Yu, Fengan</creator><creator>Sanders, Jacob N.</creator><creator>Brown, W. Clay</creator><creator>Zhao, Le</creator><creator>Paton, Robert S.</creator><creator>Houk, K. N.</creator><creator>Smith, Janet L.</creator><creator>Sherman, David H.</creator><creator>Williams, Robert M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0664-9228</orcidid><orcidid>https://orcid.org/0000-0001-8334-3647</orcidid><orcidid>https://orcid.org/0000-0002-0104-4166</orcidid><orcidid>https://orcid.org/0000-0002-3110-9450</orcidid><orcidid>https://orcid.org/0000-0002-7826-6453</orcidid><orcidid>https://orcid.org/0000-0002-9623-7779</orcidid><orcidid>https://orcid.org/0000000206649228</orcidid><orcidid>https://orcid.org/0000000296237779</orcidid><orcidid>https://orcid.org/0000000231109450</orcidid><orcidid>https://orcid.org/0000000278266453</orcidid><orcidid>https://orcid.org/0000000183343647</orcidid><orcidid>https://orcid.org/0000000201044166</orcidid></search><sort><creationdate>20191101</creationdate><title>Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase</title><author>Dan, Qingyun ; Newmister, Sean A. ; Klas, Kimberly R. ; Fraley, Amy E. ; McAfoos, Timothy J. ; Somoza, Amber D. ; Sunderhaus, James D. ; Ye, Ying ; Shende, Vikram V. ; Yu, Fengan ; Sanders, Jacob N. ; Brown, W. Clay ; Zhao, Le ; Paton, Robert S. ; Houk, K. N. ; Smith, Janet L. ; Sherman, David H. ; Williams, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-86bffe71c5d7f39ff13ad0bc383918c8228db12da996b789b23504d5f963e5df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/45/535/1266</topic><topic>631/92/173</topic><topic>639/638/309/606</topic><topic>639/638/549/974</topic><topic>639/638/60</topic><topic>Alkaloids</topic><topic>Analytical Chemistry</topic><topic>Anthelmintic agents</topic><topic>Antiparasitic agents</topic><topic>Ascomycota - chemistry</topic><topic>Biocatalysis</topic><topic>Biochemistry</topic><topic>Biomimetic synthesis</topic><topic>Biomimetics</topic><topic>Biosynthesis</topic><topic>Calcium-binding protein</topic><topic>Calmodulin</topic><topic>Cascade chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>computational chemistry</topic><topic>Crystal structure</topic><topic>Cycloaddition</topic><topic>Cycloaddition Reaction</topic><topic>Enantiomers</topic><topic>enzyme mechanisms</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Homology</topic><topic>Indole Alkaloids - chemistry</topic><topic>Indole Alkaloids - metabolism</topic><topic>Indoles</topic><topic>Inorganic Chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Intermediates</topic><topic>Metabolites</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular Structure</topic><topic>NADP</topic><topic>Natural products</topic><topic>Organic Chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Peptides</topic><topic>Physical Chemistry</topic><topic>Reductase</topic><topic>Reductases</topic><topic>Secondary metabolites</topic><topic>Site-directed mutagenesis</topic><topic>Substrates</topic><topic>x-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dan, Qingyun</creatorcontrib><creatorcontrib>Newmister, Sean A.</creatorcontrib><creatorcontrib>Klas, Kimberly R.</creatorcontrib><creatorcontrib>Fraley, Amy E.</creatorcontrib><creatorcontrib>McAfoos, Timothy J.</creatorcontrib><creatorcontrib>Somoza, Amber D.</creatorcontrib><creatorcontrib>Sunderhaus, James D.</creatorcontrib><creatorcontrib>Ye, Ying</creatorcontrib><creatorcontrib>Shende, Vikram V.</creatorcontrib><creatorcontrib>Yu, Fengan</creatorcontrib><creatorcontrib>Sanders, Jacob N.</creatorcontrib><creatorcontrib>Brown, W. Clay</creatorcontrib><creatorcontrib>Zhao, Le</creatorcontrib><creatorcontrib>Paton, Robert S.</creatorcontrib><creatorcontrib>Houk, K. N.</creatorcontrib><creatorcontrib>Smith, Janet L.</creatorcontrib><creatorcontrib>Sherman, David H.</creatorcontrib><creatorcontrib>Williams, Robert M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dan, Qingyun</au><au>Newmister, Sean A.</au><au>Klas, Kimberly R.</au><au>Fraley, Amy E.</au><au>McAfoos, Timothy J.</au><au>Somoza, Amber D.</au><au>Sunderhaus, James D.</au><au>Ye, Ying</au><au>Shende, Vikram V.</au><au>Yu, Fengan</au><au>Sanders, Jacob N.</au><au>Brown, W. Clay</au><au>Zhao, Le</au><au>Paton, Robert S.</au><au>Houk, K. N.</au><au>Smith, Janet L.</au><au>Sherman, David H.</au><au>Williams, Robert M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>11</volume><issue>11</issue><spage>972</spage><epage>980</epage><pages>972-980</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approaches. These include a biomimetic total synthesis to access the natural alkaloid and biosynthetic intermediates in racemic form and in vitro enzymatic reconstitution to provide access to the natural antipode (+)-malbrancheamide. Reductive cleavage of an l -Pro– l -Trp dipeptide from the MalG non-ribosomal peptide synthetase (NRPS) followed by reverse prenylation and a cascade of post-NRPS reactions culminates in an intramolecular [4+2] hetero-Diels–Alder (IMDA) cyclization to furnish the bicyclo[2.2.2]diazaoctane scaffold. Enzymatic assembly of optically pure (+)-premalbrancheamide involves an unexpected zwitterionic intermediate where MalC catalyses enantioselective cycloaddition as a bifunctional NADPH-dependent reductase/Diels–Alderase. The crystal structures of substrate and product complexes together with site-directed mutagenesis and molecular dynamics simulations demonstrate how MalC and PhqE (its homologue from the paraherquamide pathway) catalyse diastereo- and enantioselective cyclization in the construction of this important class of secondary metabolites. The complete biosynthesis of the fungal indole alkaloid malbrancheamide, which culminates in an intramolecular [4+2] hetero-Diels–Alder cyclization to produce the bicyclo[2.2.2]diazaoctane scaffold, has now been discovered. Chemical synthesis and protein structural analysis were used to provide mechanistic insight into this enzyme-dependent diastereo- and enantioselective cycloaddition.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31548667</pmid><doi>10.1038/s41557-019-0326-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0664-9228</orcidid><orcidid>https://orcid.org/0000-0001-8334-3647</orcidid><orcidid>https://orcid.org/0000-0002-0104-4166</orcidid><orcidid>https://orcid.org/0000-0002-3110-9450</orcidid><orcidid>https://orcid.org/0000-0002-7826-6453</orcidid><orcidid>https://orcid.org/0000-0002-9623-7779</orcidid><orcidid>https://orcid.org/0000000206649228</orcidid><orcidid>https://orcid.org/0000000296237779</orcidid><orcidid>https://orcid.org/0000000231109450</orcidid><orcidid>https://orcid.org/0000000278266453</orcidid><orcidid>https://orcid.org/0000000183343647</orcidid><orcidid>https://orcid.org/0000000201044166</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2019-11, Vol.11 (11), p.972-980
issn 1755-4330
1755-4349
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6815239
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/45/535/1266
631/92/173
639/638/309/606
639/638/549/974
639/638/60
Alkaloids
Analytical Chemistry
Anthelmintic agents
Antiparasitic agents
Ascomycota - chemistry
Biocatalysis
Biochemistry
Biomimetic synthesis
Biomimetics
Biosynthesis
Calcium-binding protein
Calmodulin
Cascade chemical reactions
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
computational chemistry
Crystal structure
Cycloaddition
Cycloaddition Reaction
Enantiomers
enzyme mechanisms
Enzymes
Evolution
Homology
Indole Alkaloids - chemistry
Indole Alkaloids - metabolism
Indoles
Inorganic Chemistry
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Intermediates
Metabolites
Models, Molecular
Molecular dynamics
Molecular Structure
NADP
Natural products
Organic Chemistry
Oxidoreductases - metabolism
Peptides
Physical Chemistry
Reductase
Reductases
Secondary metabolites
Site-directed mutagenesis
Substrates
x-ray crystallography
title Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fungal%20indole%20alkaloid%20biogenesis%20through%20evolution%20of%20a%20bifunctional%20reductase/Diels%E2%80%93Alderase&rft.jtitle=Nature%20chemistry&rft.au=Dan,%20Qingyun&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-11-01&rft.volume=11&rft.issue=11&rft.spage=972&rft.epage=980&rft.pages=972-980&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-019-0326-6&rft_dat=%3Cproquest_pubme%3E2309514812%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309514812&rft_id=info:pmid/31548667&rfr_iscdi=true