Dynamics of living cells in a cytomorphological state space
Cells are nonequilibrium systems that exchange matter and energy with the environment to sustain their metabolic needs. The nonequilibrium nature of this system presents considerable challenges to developing a general theory describing its behavior; however, when studied at appropriate spatiotempora...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-10, Vol.116 (43), p.21556-21562 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21562 |
---|---|
container_issue | 43 |
container_start_page | 21556 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Chang, Amy Y. Marshall, Wallace F. |
description | Cells are nonequilibrium systems that exchange matter and energy with the environment to sustain their metabolic needs. The nonequilibrium nature of this system presents considerable challenges to developing a general theory describing its behavior; however, when studied at appropriate spatiotemporal scales, the behavior of ensembles of nonequilibrium systems can resemble that of a system at equilibrium. Here we apply this principle to a population of cells within a cytomorphological state space and demonstrate that cellular transition dynamics within this space can be described using equilibrium formalisms. We use this framework to map the effective energy landscape underlying the cytomorphological state space of a population of mouse embryonic fibroblasts (MEFs) and identify topographical nonuniformity in this space, indicating nonuniform occupation of cytomorphological states within an isogenic population. The introduction of exogenous apoptotic agents fundamentally altered this energy landscape, inducing formation of additional energy minima that correlated directly with changes in sensitivity to apoptosis induction. An equilibrium framework allows us to describe the behavior of an ensemble of single cells, suggesting that although cells are complex nonequilibrium systems, the application of formalisms derived from equilibrium thermodynamics can provide insight into the basis of nongenetic heterogeneities within cell populations, as well as the relationship between cytomorphological and functional heterogeneity. |
doi_str_mv | 10.1073/pnas.1902849116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6815155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26859753</jstor_id><sourcerecordid>26859753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-a17e9f3411540763bbc0b2b9e8f99be220eaa32357b205698f996cc714d1fafc3</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMo7vpx9qQUvHipziRN2yAI4jcIXvQc0my6m6VtatJd2P_ell3Xj9PAvN885vEIOUG4RMjYVduocIkCaJ4IxHSHjBEExmkiYJeMAWgW5wlNRuQghDkACJ7DPhkx5AIpwphc368aVVsdIldGlV3aZhppU1Uhsk2kIr3qXO18O3OVm1qtqih0qjNRaJU2R2SvVFUwx5t5SD4eH97vnuPXt6eXu9vXWHMQXawwM6JkCSJPIEtZUWgoaCFMXgpRGErBKMUo41lBgadiWKdaZ5hMsFSlZofkZu3bLoraTLRpOq8q2XpbK7-STln5V2nsTE7dUqY5cuS8N7jYGHj3uTChk7UNQ0rVGLcIkjKgSQYixR49_4fO3cI3fbyBEowC4EBdrSntXQjelNtnEORQjByKkT_F9BdnvzNs-e8meuB0DcxD5_xWp2nORcYZ-wKEO5MB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309320011</pqid></control><display><type>article</type><title>Dynamics of living cells in a cytomorphological state space</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chang, Amy Y. ; Marshall, Wallace F.</creator><creatorcontrib>Chang, Amy Y. ; Marshall, Wallace F.</creatorcontrib><description>Cells are nonequilibrium systems that exchange matter and energy with the environment to sustain their metabolic needs. The nonequilibrium nature of this system presents considerable challenges to developing a general theory describing its behavior; however, when studied at appropriate spatiotemporal scales, the behavior of ensembles of nonequilibrium systems can resemble that of a system at equilibrium. Here we apply this principle to a population of cells within a cytomorphological state space and demonstrate that cellular transition dynamics within this space can be described using equilibrium formalisms. We use this framework to map the effective energy landscape underlying the cytomorphological state space of a population of mouse embryonic fibroblasts (MEFs) and identify topographical nonuniformity in this space, indicating nonuniform occupation of cytomorphological states within an isogenic population. The introduction of exogenous apoptotic agents fundamentally altered this energy landscape, inducing formation of additional energy minima that correlated directly with changes in sensitivity to apoptosis induction. An equilibrium framework allows us to describe the behavior of an ensemble of single cells, suggesting that although cells are complex nonequilibrium systems, the application of formalisms derived from equilibrium thermodynamics can provide insight into the basis of nongenetic heterogeneities within cell populations, as well as the relationship between cytomorphological and functional heterogeneity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1902849116</identifier><identifier>PMID: 31591210</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Apoptosis ; Biological Sciences ; Cell Proliferation - physiology ; Cells, Cultured ; Embryo fibroblasts ; Embryos ; Energy ; Energy Metabolism - physiology ; Equilibrium ; Fibroblasts ; Formalism ; Heterogeneity ; Landscape ; Mice ; Models, Biological ; Nonuniformity ; Reagents ; Spatial Analysis ; Thermodynamic equilibrium ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-10, Vol.116 (43), p.21556-21562</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Oct 22, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-a17e9f3411540763bbc0b2b9e8f99be220eaa32357b205698f996cc714d1fafc3</citedby><cites>FETCH-LOGICAL-c509t-a17e9f3411540763bbc0b2b9e8f99be220eaa32357b205698f996cc714d1fafc3</cites><orcidid>0000-0002-8467-5763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26859753$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26859753$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31591210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Amy Y.</creatorcontrib><creatorcontrib>Marshall, Wallace F.</creatorcontrib><title>Dynamics of living cells in a cytomorphological state space</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cells are nonequilibrium systems that exchange matter and energy with the environment to sustain their metabolic needs. The nonequilibrium nature of this system presents considerable challenges to developing a general theory describing its behavior; however, when studied at appropriate spatiotemporal scales, the behavior of ensembles of nonequilibrium systems can resemble that of a system at equilibrium. Here we apply this principle to a population of cells within a cytomorphological state space and demonstrate that cellular transition dynamics within this space can be described using equilibrium formalisms. We use this framework to map the effective energy landscape underlying the cytomorphological state space of a population of mouse embryonic fibroblasts (MEFs) and identify topographical nonuniformity in this space, indicating nonuniform occupation of cytomorphological states within an isogenic population. The introduction of exogenous apoptotic agents fundamentally altered this energy landscape, inducing formation of additional energy minima that correlated directly with changes in sensitivity to apoptosis induction. An equilibrium framework allows us to describe the behavior of an ensemble of single cells, suggesting that although cells are complex nonequilibrium systems, the application of formalisms derived from equilibrium thermodynamics can provide insight into the basis of nongenetic heterogeneities within cell populations, as well as the relationship between cytomorphological and functional heterogeneity.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Biological Sciences</subject><subject>Cell Proliferation - physiology</subject><subject>Cells, Cultured</subject><subject>Embryo fibroblasts</subject><subject>Embryos</subject><subject>Energy</subject><subject>Energy Metabolism - physiology</subject><subject>Equilibrium</subject><subject>Fibroblasts</subject><subject>Formalism</subject><subject>Heterogeneity</subject><subject>Landscape</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Nonuniformity</subject><subject>Reagents</subject><subject>Spatial Analysis</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1LxDAQxYMo7vpx9qQUvHipziRN2yAI4jcIXvQc0my6m6VtatJd2P_ell3Xj9PAvN885vEIOUG4RMjYVduocIkCaJ4IxHSHjBEExmkiYJeMAWgW5wlNRuQghDkACJ7DPhkx5AIpwphc368aVVsdIldGlV3aZhppU1Uhsk2kIr3qXO18O3OVm1qtqih0qjNRaJU2R2SvVFUwx5t5SD4eH97vnuPXt6eXu9vXWHMQXawwM6JkCSJPIEtZUWgoaCFMXgpRGErBKMUo41lBgadiWKdaZ5hMsFSlZofkZu3bLoraTLRpOq8q2XpbK7-STln5V2nsTE7dUqY5cuS8N7jYGHj3uTChk7UNQ0rVGLcIkjKgSQYixR49_4fO3cI3fbyBEowC4EBdrSntXQjelNtnEORQjByKkT_F9BdnvzNs-e8meuB0DcxD5_xWp2nORcYZ-wKEO5MB</recordid><startdate>20191022</startdate><enddate>20191022</enddate><creator>Chang, Amy Y.</creator><creator>Marshall, Wallace F.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8467-5763</orcidid></search><sort><creationdate>20191022</creationdate><title>Dynamics of living cells in a cytomorphological state space</title><author>Chang, Amy Y. ; Marshall, Wallace F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-a17e9f3411540763bbc0b2b9e8f99be220eaa32357b205698f996cc714d1fafc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Biological Sciences</topic><topic>Cell Proliferation - physiology</topic><topic>Cells, Cultured</topic><topic>Embryo fibroblasts</topic><topic>Embryos</topic><topic>Energy</topic><topic>Energy Metabolism - physiology</topic><topic>Equilibrium</topic><topic>Fibroblasts</topic><topic>Formalism</topic><topic>Heterogeneity</topic><topic>Landscape</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Nonuniformity</topic><topic>Reagents</topic><topic>Spatial Analysis</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Amy Y.</creatorcontrib><creatorcontrib>Marshall, Wallace F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Amy Y.</au><au>Marshall, Wallace F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of living cells in a cytomorphological state space</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-10-22</date><risdate>2019</risdate><volume>116</volume><issue>43</issue><spage>21556</spage><epage>21562</epage><pages>21556-21562</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cells are nonequilibrium systems that exchange matter and energy with the environment to sustain their metabolic needs. The nonequilibrium nature of this system presents considerable challenges to developing a general theory describing its behavior; however, when studied at appropriate spatiotemporal scales, the behavior of ensembles of nonequilibrium systems can resemble that of a system at equilibrium. Here we apply this principle to a population of cells within a cytomorphological state space and demonstrate that cellular transition dynamics within this space can be described using equilibrium formalisms. We use this framework to map the effective energy landscape underlying the cytomorphological state space of a population of mouse embryonic fibroblasts (MEFs) and identify topographical nonuniformity in this space, indicating nonuniform occupation of cytomorphological states within an isogenic population. The introduction of exogenous apoptotic agents fundamentally altered this energy landscape, inducing formation of additional energy minima that correlated directly with changes in sensitivity to apoptosis induction. An equilibrium framework allows us to describe the behavior of an ensemble of single cells, suggesting that although cells are complex nonequilibrium systems, the application of formalisms derived from equilibrium thermodynamics can provide insight into the basis of nongenetic heterogeneities within cell populations, as well as the relationship between cytomorphological and functional heterogeneity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31591210</pmid><doi>10.1073/pnas.1902849116</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8467-5763</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-10, Vol.116 (43), p.21556-21562 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6815155 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Apoptosis Biological Sciences Cell Proliferation - physiology Cells, Cultured Embryo fibroblasts Embryos Energy Energy Metabolism - physiology Equilibrium Fibroblasts Formalism Heterogeneity Landscape Mice Models, Biological Nonuniformity Reagents Spatial Analysis Thermodynamic equilibrium Thermodynamics |
title | Dynamics of living cells in a cytomorphological state space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20living%20cells%20in%20a%20cytomorphological%20state%20space&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chang,%20Amy%20Y.&rft.date=2019-10-22&rft.volume=116&rft.issue=43&rft.spage=21556&rft.epage=21562&rft.pages=21556-21562&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1902849116&rft_dat=%3Cjstor_pubme%3E26859753%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309320011&rft_id=info:pmid/31591210&rft_jstor_id=26859753&rfr_iscdi=true |