Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements
The objective of the current work is to support the design of a pilot hydrogen and electricity producing plant that uses natural gas (or biomethane) as raw material, as a transition option towards a 100% renewable transportation system. The plant, with a solid oxide fuel cell (SOFC) as principal tec...
Gespeichert in:
Veröffentlicht in: | Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2019-08, Vol.19 (4), p.389-407 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 4 |
container_start_page | 389 |
container_title | Fuel cells (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Pérez‐Fortes, M. Mian, A. Srikanth, S. Wang, L. Diethelm, S. Varkaraki, E. Mirabelli, I. Makkus, R. Schoon, R. Maréchal, F. Van herle, J. |
description | The objective of the current work is to support the design of a pilot hydrogen and electricity producing plant that uses natural gas (or biomethane) as raw material, as a transition option towards a 100% renewable transportation system. The plant, with a solid oxide fuel cell (SOFC) as principal technology, is intended to be the main unit of an electric vehicle station. The refueling station has to work at different operation periods characterized by the hydrogen demand and the electricity needed for supply and self‐consumption. The same set of heat exchangers has to satisfy the heating and cooling needs of the different operation periods. In order to optimize the operating variables of the pilot plant and to provide the best heat exchanger network, the applied methodology follows a systematic procedure for multi‐objective, i.e. maximum plant efficiency and minimum number of heat exchanger matches, and multi‐period optimization. The solving strategy combines process flow modeling in steady state, superstructure‐based mathematical programming and the use of an evolutionary‐based algorithm for optimization. The results show that the plant can reach a daily weighted efficiency exceeding 60%, up to 80% when considering heat utilization. |
doi_str_mv | 10.1002/fuce.201800200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6813630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2274967843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4820-7554ed6adc773a082078ec7ad56d3141619938d2e9ca2264dedc5a891fe5d8313</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0Eoh9w5WyJC5dd_BXHuSChdLdFqtSqS8-Wa0-2rhK7tR1Q-OvJdqtFcOHksef3nmf0EPpAyZISwj53o4UlI1TNF0JeoWMqabWQqhKvD7WQR-gk5wdCaK2UeIuOOJWK1A07Rr_OIPttwLHDBl_7Pha8uVq3eDPlAgPuYsLlHnAbhzsfwOHrFN1oi4_PkovJpbiFgE1weNWDLclbXyY8BgcJ30A3Qu_DFm-KedbcwNPoEwwQSn6H3nSmz_D-5TxFt-vV9_ZicXl1_q39ermwQjGyqKtKgJPG2brmhsxPtQJbG1dJx6mYd2warhyDxhrGpHDgbGVUQzuonOKUn6Ive9_H8W6Ym_PfyfT6MfnBpElH4_XfneDv9Tb-0FJRLjmZDT69GKT4NEIuevDZQt-bAHHMmnFKG0YF5zP68R_0IY4pzOtpxmrRyFqJHbXcUzbFnBN0h2Eo0btY9S5WfYh1FjR7wU_fw_QfWq9v29Uf7W9Bf6Y2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274967843</pqid></control><display><type>article</type><title>Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements</title><source>Wiley Journals</source><creator>Pérez‐Fortes, M. ; Mian, A. ; Srikanth, S. ; Wang, L. ; Diethelm, S. ; Varkaraki, E. ; Mirabelli, I. ; Makkus, R. ; Schoon, R. ; Maréchal, F. ; Van herle, J.</creator><creatorcontrib>Pérez‐Fortes, M. ; Mian, A. ; Srikanth, S. ; Wang, L. ; Diethelm, S. ; Varkaraki, E. ; Mirabelli, I. ; Makkus, R. ; Schoon, R. ; Maréchal, F. ; Van herle, J.</creatorcontrib><description>The objective of the current work is to support the design of a pilot hydrogen and electricity producing plant that uses natural gas (or biomethane) as raw material, as a transition option towards a 100% renewable transportation system. The plant, with a solid oxide fuel cell (SOFC) as principal technology, is intended to be the main unit of an electric vehicle station. The refueling station has to work at different operation periods characterized by the hydrogen demand and the electricity needed for supply and self‐consumption. The same set of heat exchangers has to satisfy the heating and cooling needs of the different operation periods. In order to optimize the operating variables of the pilot plant and to provide the best heat exchanger network, the applied methodology follows a systematic procedure for multi‐objective, i.e. maximum plant efficiency and minimum number of heat exchanger matches, and multi‐period optimization. The solving strategy combines process flow modeling in steady state, superstructure‐based mathematical programming and the use of an evolutionary‐based algorithm for optimization. The results show that the plant can reach a daily weighted efficiency exceeding 60%, up to 80% when considering heat utilization.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201800200</identifier><identifier>PMID: 31680792</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biogas ; Conceptual Design, Electric Vehicle Station, Fuel Cell ; Electricity ; Electricity consumption ; Equilibrium flow ; Evolutionary algorithms ; Heat Exchanger Network (HEN) ; Heat exchangers ; Hydrogen ; Hydrogen production ; Hydrogen Refueling Station (HRS) ; Industrial Chemistry ; Mathematical programming ; Multi‐Objective Optimization (MOO) ; Multi‐Period Optimization ; Natural gas ; Optimization ; Original Research Paper ; Original Research Papers ; Process System Engineering (PSE) ; Refueling ; Solid Oxide Fuel Cell (SOFC) ; Solid oxide fuel cells ; Steady state models ; Superstructures ; Transportation systems</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2019-08, Vol.19 (4), p.389-407</ispartof><rights>2019 The Authors. is published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4820-7554ed6adc773a082078ec7ad56d3141619938d2e9ca2264dedc5a891fe5d8313</citedby><cites>FETCH-LOGICAL-c4820-7554ed6adc773a082078ec7ad56d3141619938d2e9ca2264dedc5a891fe5d8313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffuce.201800200$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffuce.201800200$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pérez‐Fortes, M.</creatorcontrib><creatorcontrib>Mian, A.</creatorcontrib><creatorcontrib>Srikanth, S.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Diethelm, S.</creatorcontrib><creatorcontrib>Varkaraki, E.</creatorcontrib><creatorcontrib>Mirabelli, I.</creatorcontrib><creatorcontrib>Makkus, R.</creatorcontrib><creatorcontrib>Schoon, R.</creatorcontrib><creatorcontrib>Maréchal, F.</creatorcontrib><creatorcontrib>Van herle, J.</creatorcontrib><title>Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><description>The objective of the current work is to support the design of a pilot hydrogen and electricity producing plant that uses natural gas (or biomethane) as raw material, as a transition option towards a 100% renewable transportation system. The plant, with a solid oxide fuel cell (SOFC) as principal technology, is intended to be the main unit of an electric vehicle station. The refueling station has to work at different operation periods characterized by the hydrogen demand and the electricity needed for supply and self‐consumption. The same set of heat exchangers has to satisfy the heating and cooling needs of the different operation periods. In order to optimize the operating variables of the pilot plant and to provide the best heat exchanger network, the applied methodology follows a systematic procedure for multi‐objective, i.e. maximum plant efficiency and minimum number of heat exchanger matches, and multi‐period optimization. The solving strategy combines process flow modeling in steady state, superstructure‐based mathematical programming and the use of an evolutionary‐based algorithm for optimization. The results show that the plant can reach a daily weighted efficiency exceeding 60%, up to 80% when considering heat utilization.</description><subject>Biogas</subject><subject>Conceptual Design, Electric Vehicle Station, Fuel Cell</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Equilibrium flow</subject><subject>Evolutionary algorithms</subject><subject>Heat Exchanger Network (HEN)</subject><subject>Heat exchangers</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Hydrogen Refueling Station (HRS)</subject><subject>Industrial Chemistry</subject><subject>Mathematical programming</subject><subject>Multi‐Objective Optimization (MOO)</subject><subject>Multi‐Period Optimization</subject><subject>Natural gas</subject><subject>Optimization</subject><subject>Original Research Paper</subject><subject>Original Research Papers</subject><subject>Process System Engineering (PSE)</subject><subject>Refueling</subject><subject>Solid Oxide Fuel Cell (SOFC)</subject><subject>Solid oxide fuel cells</subject><subject>Steady state models</subject><subject>Superstructures</subject><subject>Transportation systems</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc1v1DAQxS0Eoh9w5WyJC5dd_BXHuSChdLdFqtSqS8-Wa0-2rhK7tR1Q-OvJdqtFcOHksef3nmf0EPpAyZISwj53o4UlI1TNF0JeoWMqabWQqhKvD7WQR-gk5wdCaK2UeIuOOJWK1A07Rr_OIPttwLHDBl_7Pha8uVq3eDPlAgPuYsLlHnAbhzsfwOHrFN1oi4_PkovJpbiFgE1weNWDLclbXyY8BgcJ30A3Qu_DFm-KedbcwNPoEwwQSn6H3nSmz_D-5TxFt-vV9_ZicXl1_q39ermwQjGyqKtKgJPG2brmhsxPtQJbG1dJx6mYd2warhyDxhrGpHDgbGVUQzuonOKUn6Ive9_H8W6Ym_PfyfT6MfnBpElH4_XfneDv9Tb-0FJRLjmZDT69GKT4NEIuevDZQt-bAHHMmnFKG0YF5zP68R_0IY4pzOtpxmrRyFqJHbXcUzbFnBN0h2Eo0btY9S5WfYh1FjR7wU_fw_QfWq9v29Uf7W9Bf6Y2</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Pérez‐Fortes, M.</creator><creator>Mian, A.</creator><creator>Srikanth, S.</creator><creator>Wang, L.</creator><creator>Diethelm, S.</creator><creator>Varkaraki, E.</creator><creator>Mirabelli, I.</creator><creator>Makkus, R.</creator><creator>Schoon, R.</creator><creator>Maréchal, F.</creator><creator>Van herle, J.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201908</creationdate><title>Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements</title><author>Pérez‐Fortes, M. ; Mian, A. ; Srikanth, S. ; Wang, L. ; Diethelm, S. ; Varkaraki, E. ; Mirabelli, I. ; Makkus, R. ; Schoon, R. ; Maréchal, F. ; Van herle, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4820-7554ed6adc773a082078ec7ad56d3141619938d2e9ca2264dedc5a891fe5d8313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biogas</topic><topic>Conceptual Design, Electric Vehicle Station, Fuel Cell</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Equilibrium flow</topic><topic>Evolutionary algorithms</topic><topic>Heat Exchanger Network (HEN)</topic><topic>Heat exchangers</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Hydrogen Refueling Station (HRS)</topic><topic>Industrial Chemistry</topic><topic>Mathematical programming</topic><topic>Multi‐Objective Optimization (MOO)</topic><topic>Multi‐Period Optimization</topic><topic>Natural gas</topic><topic>Optimization</topic><topic>Original Research Paper</topic><topic>Original Research Papers</topic><topic>Process System Engineering (PSE)</topic><topic>Refueling</topic><topic>Solid Oxide Fuel Cell (SOFC)</topic><topic>Solid oxide fuel cells</topic><topic>Steady state models</topic><topic>Superstructures</topic><topic>Transportation systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez‐Fortes, M.</creatorcontrib><creatorcontrib>Mian, A.</creatorcontrib><creatorcontrib>Srikanth, S.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Diethelm, S.</creatorcontrib><creatorcontrib>Varkaraki, E.</creatorcontrib><creatorcontrib>Mirabelli, I.</creatorcontrib><creatorcontrib>Makkus, R.</creatorcontrib><creatorcontrib>Schoon, R.</creatorcontrib><creatorcontrib>Maréchal, F.</creatorcontrib><creatorcontrib>Van herle, J.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez‐Fortes, M.</au><au>Mian, A.</au><au>Srikanth, S.</au><au>Wang, L.</au><au>Diethelm, S.</au><au>Varkaraki, E.</au><au>Mirabelli, I.</au><au>Makkus, R.</au><au>Schoon, R.</au><au>Maréchal, F.</au><au>Van herle, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><date>2019-08</date><risdate>2019</risdate><volume>19</volume><issue>4</issue><spage>389</spage><epage>407</epage><pages>389-407</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>The objective of the current work is to support the design of a pilot hydrogen and electricity producing plant that uses natural gas (or biomethane) as raw material, as a transition option towards a 100% renewable transportation system. The plant, with a solid oxide fuel cell (SOFC) as principal technology, is intended to be the main unit of an electric vehicle station. The refueling station has to work at different operation periods characterized by the hydrogen demand and the electricity needed for supply and self‐consumption. The same set of heat exchangers has to satisfy the heating and cooling needs of the different operation periods. In order to optimize the operating variables of the pilot plant and to provide the best heat exchanger network, the applied methodology follows a systematic procedure for multi‐objective, i.e. maximum plant efficiency and minimum number of heat exchanger matches, and multi‐period optimization. The solving strategy combines process flow modeling in steady state, superstructure‐based mathematical programming and the use of an evolutionary‐based algorithm for optimization. The results show that the plant can reach a daily weighted efficiency exceeding 60%, up to 80% when considering heat utilization.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31680792</pmid><doi>10.1002/fuce.201800200</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-6846 |
ispartof | Fuel cells (Weinheim an der Bergstrasse, Germany), 2019-08, Vol.19 (4), p.389-407 |
issn | 1615-6846 1615-6854 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6813630 |
source | Wiley Journals |
subjects | Biogas Conceptual Design, Electric Vehicle Station, Fuel Cell Electricity Electricity consumption Equilibrium flow Evolutionary algorithms Heat Exchanger Network (HEN) Heat exchangers Hydrogen Hydrogen production Hydrogen Refueling Station (HRS) Industrial Chemistry Mathematical programming Multi‐Objective Optimization (MOO) Multi‐Period Optimization Natural gas Optimization Original Research Paper Original Research Papers Process System Engineering (PSE) Refueling Solid Oxide Fuel Cell (SOFC) Solid oxide fuel cells Steady state models Superstructures Transportation systems |
title | Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Pilot%20SOFC%20System%20for%20the%20Combined%20Production%20of%20Hydrogen%20and%20Electricity%20under%20Refueling%20Station%20Requirements&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=P%C3%A9rez%E2%80%90Fortes,%20M.&rft.date=2019-08&rft.volume=19&rft.issue=4&rft.spage=389&rft.epage=407&rft.pages=389-407&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201800200&rft_dat=%3Cproquest_pubme%3E2274967843%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2274967843&rft_id=info:pmid/31680792&rfr_iscdi=true |