Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements

The objective of the current work is to support the design of a pilot hydrogen and electricity producing plant that uses natural gas (or biomethane) as raw material, as a transition option towards a 100% renewable transportation system. The plant, with a solid oxide fuel cell (SOFC) as principal tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2019-08, Vol.19 (4), p.389-407
Hauptverfasser: Pérez‐Fortes, M., Mian, A., Srikanth, S., Wang, L., Diethelm, S., Varkaraki, E., Mirabelli, I., Makkus, R., Schoon, R., Maréchal, F., Van herle, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 4
container_start_page 389
container_title Fuel cells (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Pérez‐Fortes, M.
Mian, A.
Srikanth, S.
Wang, L.
Diethelm, S.
Varkaraki, E.
Mirabelli, I.
Makkus, R.
Schoon, R.
Maréchal, F.
Van herle, J.
description The objective of the current work is to support the design of a pilot hydrogen and electricity producing plant that uses natural gas (or biomethane) as raw material, as a transition option towards a 100% renewable transportation system. The plant, with a solid oxide fuel cell (SOFC) as principal technology, is intended to be the main unit of an electric vehicle station. The refueling station has to work at different operation periods characterized by the hydrogen demand and the electricity needed for supply and self‐consumption. The same set of heat exchangers has to satisfy the heating and cooling needs of the different operation periods. In order to optimize the operating variables of the pilot plant and to provide the best heat exchanger network, the applied methodology follows a systematic procedure for multi‐objective, i.e. maximum plant efficiency and minimum number of heat exchanger matches, and multi‐period optimization. The solving strategy combines process flow modeling in steady state, superstructure‐based mathematical programming and the use of an evolutionary‐based algorithm for optimization. The results show that the plant can reach a daily weighted efficiency exceeding 60%, up to 80% when considering heat utilization.
doi_str_mv 10.1002/fuce.201800200
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6813630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2274967843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4820-7554ed6adc773a082078ec7ad56d3141619938d2e9ca2264dedc5a891fe5d8313</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0Eoh9w5WyJC5dd_BXHuSChdLdFqtSqS8-Wa0-2rhK7tR1Q-OvJdqtFcOHksef3nmf0EPpAyZISwj53o4UlI1TNF0JeoWMqabWQqhKvD7WQR-gk5wdCaK2UeIuOOJWK1A07Rr_OIPttwLHDBl_7Pha8uVq3eDPlAgPuYsLlHnAbhzsfwOHrFN1oi4_PkovJpbiFgE1weNWDLclbXyY8BgcJ30A3Qu_DFm-KedbcwNPoEwwQSn6H3nSmz_D-5TxFt-vV9_ZicXl1_q39ermwQjGyqKtKgJPG2brmhsxPtQJbG1dJx6mYd2warhyDxhrGpHDgbGVUQzuonOKUn6Ive9_H8W6Ym_PfyfT6MfnBpElH4_XfneDv9Tb-0FJRLjmZDT69GKT4NEIuevDZQt-bAHHMmnFKG0YF5zP68R_0IY4pzOtpxmrRyFqJHbXcUzbFnBN0h2Eo0btY9S5WfYh1FjR7wU_fw_QfWq9v29Uf7W9Bf6Y2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274967843</pqid></control><display><type>article</type><title>Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements</title><source>Wiley Journals</source><creator>Pérez‐Fortes, M. ; Mian, A. ; Srikanth, S. ; Wang, L. ; Diethelm, S. ; Varkaraki, E. ; Mirabelli, I. ; Makkus, R. ; Schoon, R. ; Maréchal, F. ; Van herle, J.</creator><creatorcontrib>Pérez‐Fortes, M. ; Mian, A. ; Srikanth, S. ; Wang, L. ; Diethelm, S. ; Varkaraki, E. ; Mirabelli, I. ; Makkus, R. ; Schoon, R. ; Maréchal, F. ; Van herle, J.</creatorcontrib><description>The objective of the current work is to support the design of a pilot hydrogen and electricity producing plant that uses natural gas (or biomethane) as raw material, as a transition option towards a 100% renewable transportation system. The plant, with a solid oxide fuel cell (SOFC) as principal technology, is intended to be the main unit of an electric vehicle station. The refueling station has to work at different operation periods characterized by the hydrogen demand and the electricity needed for supply and self‐consumption. The same set of heat exchangers has to satisfy the heating and cooling needs of the different operation periods. In order to optimize the operating variables of the pilot plant and to provide the best heat exchanger network, the applied methodology follows a systematic procedure for multi‐objective, i.e. maximum plant efficiency and minimum number of heat exchanger matches, and multi‐period optimization. The solving strategy combines process flow modeling in steady state, superstructure‐based mathematical programming and the use of an evolutionary‐based algorithm for optimization. The results show that the plant can reach a daily weighted efficiency exceeding 60%, up to 80% when considering heat utilization.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201800200</identifier><identifier>PMID: 31680792</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biogas ; Conceptual Design, Electric Vehicle Station, Fuel Cell ; Electricity ; Electricity consumption ; Equilibrium flow ; Evolutionary algorithms ; Heat Exchanger Network (HEN) ; Heat exchangers ; Hydrogen ; Hydrogen production ; Hydrogen Refueling Station (HRS) ; Industrial Chemistry ; Mathematical programming ; Multi‐Objective Optimization (MOO) ; Multi‐Period Optimization ; Natural gas ; Optimization ; Original Research Paper ; Original Research Papers ; Process System Engineering (PSE) ; Refueling ; Solid Oxide Fuel Cell (SOFC) ; Solid oxide fuel cells ; Steady state models ; Superstructures ; Transportation systems</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2019-08, Vol.19 (4), p.389-407</ispartof><rights>2019 The Authors. is published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4820-7554ed6adc773a082078ec7ad56d3141619938d2e9ca2264dedc5a891fe5d8313</citedby><cites>FETCH-LOGICAL-c4820-7554ed6adc773a082078ec7ad56d3141619938d2e9ca2264dedc5a891fe5d8313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffuce.201800200$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffuce.201800200$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pérez‐Fortes, M.</creatorcontrib><creatorcontrib>Mian, A.</creatorcontrib><creatorcontrib>Srikanth, S.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Diethelm, S.</creatorcontrib><creatorcontrib>Varkaraki, E.</creatorcontrib><creatorcontrib>Mirabelli, I.</creatorcontrib><creatorcontrib>Makkus, R.</creatorcontrib><creatorcontrib>Schoon, R.</creatorcontrib><creatorcontrib>Maréchal, F.</creatorcontrib><creatorcontrib>Van herle, J.</creatorcontrib><title>Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><description>The objective of the current work is to support the design of a pilot hydrogen and electricity producing plant that uses natural gas (or biomethane) as raw material, as a transition option towards a 100% renewable transportation system. The plant, with a solid oxide fuel cell (SOFC) as principal technology, is intended to be the main unit of an electric vehicle station. The refueling station has to work at different operation periods characterized by the hydrogen demand and the electricity needed for supply and self‐consumption. The same set of heat exchangers has to satisfy the heating and cooling needs of the different operation periods. In order to optimize the operating variables of the pilot plant and to provide the best heat exchanger network, the applied methodology follows a systematic procedure for multi‐objective, i.e. maximum plant efficiency and minimum number of heat exchanger matches, and multi‐period optimization. The solving strategy combines process flow modeling in steady state, superstructure‐based mathematical programming and the use of an evolutionary‐based algorithm for optimization. The results show that the plant can reach a daily weighted efficiency exceeding 60%, up to 80% when considering heat utilization.</description><subject>Biogas</subject><subject>Conceptual Design, Electric Vehicle Station, Fuel Cell</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Equilibrium flow</subject><subject>Evolutionary algorithms</subject><subject>Heat Exchanger Network (HEN)</subject><subject>Heat exchangers</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Hydrogen Refueling Station (HRS)</subject><subject>Industrial Chemistry</subject><subject>Mathematical programming</subject><subject>Multi‐Objective Optimization (MOO)</subject><subject>Multi‐Period Optimization</subject><subject>Natural gas</subject><subject>Optimization</subject><subject>Original Research Paper</subject><subject>Original Research Papers</subject><subject>Process System Engineering (PSE)</subject><subject>Refueling</subject><subject>Solid Oxide Fuel Cell (SOFC)</subject><subject>Solid oxide fuel cells</subject><subject>Steady state models</subject><subject>Superstructures</subject><subject>Transportation systems</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc1v1DAQxS0Eoh9w5WyJC5dd_BXHuSChdLdFqtSqS8-Wa0-2rhK7tR1Q-OvJdqtFcOHksef3nmf0EPpAyZISwj53o4UlI1TNF0JeoWMqabWQqhKvD7WQR-gk5wdCaK2UeIuOOJWK1A07Rr_OIPttwLHDBl_7Pha8uVq3eDPlAgPuYsLlHnAbhzsfwOHrFN1oi4_PkovJpbiFgE1weNWDLclbXyY8BgcJ30A3Qu_DFm-KedbcwNPoEwwQSn6H3nSmz_D-5TxFt-vV9_ZicXl1_q39ermwQjGyqKtKgJPG2brmhsxPtQJbG1dJx6mYd2warhyDxhrGpHDgbGVUQzuonOKUn6Ive9_H8W6Ym_PfyfT6MfnBpElH4_XfneDv9Tb-0FJRLjmZDT69GKT4NEIuevDZQt-bAHHMmnFKG0YF5zP68R_0IY4pzOtpxmrRyFqJHbXcUzbFnBN0h2Eo0btY9S5WfYh1FjR7wU_fw_QfWq9v29Uf7W9Bf6Y2</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Pérez‐Fortes, M.</creator><creator>Mian, A.</creator><creator>Srikanth, S.</creator><creator>Wang, L.</creator><creator>Diethelm, S.</creator><creator>Varkaraki, E.</creator><creator>Mirabelli, I.</creator><creator>Makkus, R.</creator><creator>Schoon, R.</creator><creator>Maréchal, F.</creator><creator>Van herle, J.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201908</creationdate><title>Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements</title><author>Pérez‐Fortes, M. ; Mian, A. ; Srikanth, S. ; Wang, L. ; Diethelm, S. ; Varkaraki, E. ; Mirabelli, I. ; Makkus, R. ; Schoon, R. ; Maréchal, F. ; Van herle, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4820-7554ed6adc773a082078ec7ad56d3141619938d2e9ca2264dedc5a891fe5d8313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biogas</topic><topic>Conceptual Design, Electric Vehicle Station, Fuel Cell</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Equilibrium flow</topic><topic>Evolutionary algorithms</topic><topic>Heat Exchanger Network (HEN)</topic><topic>Heat exchangers</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Hydrogen Refueling Station (HRS)</topic><topic>Industrial Chemistry</topic><topic>Mathematical programming</topic><topic>Multi‐Objective Optimization (MOO)</topic><topic>Multi‐Period Optimization</topic><topic>Natural gas</topic><topic>Optimization</topic><topic>Original Research Paper</topic><topic>Original Research Papers</topic><topic>Process System Engineering (PSE)</topic><topic>Refueling</topic><topic>Solid Oxide Fuel Cell (SOFC)</topic><topic>Solid oxide fuel cells</topic><topic>Steady state models</topic><topic>Superstructures</topic><topic>Transportation systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez‐Fortes, M.</creatorcontrib><creatorcontrib>Mian, A.</creatorcontrib><creatorcontrib>Srikanth, S.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Diethelm, S.</creatorcontrib><creatorcontrib>Varkaraki, E.</creatorcontrib><creatorcontrib>Mirabelli, I.</creatorcontrib><creatorcontrib>Makkus, R.</creatorcontrib><creatorcontrib>Schoon, R.</creatorcontrib><creatorcontrib>Maréchal, F.</creatorcontrib><creatorcontrib>Van herle, J.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez‐Fortes, M.</au><au>Mian, A.</au><au>Srikanth, S.</au><au>Wang, L.</au><au>Diethelm, S.</au><au>Varkaraki, E.</au><au>Mirabelli, I.</au><au>Makkus, R.</au><au>Schoon, R.</au><au>Maréchal, F.</au><au>Van herle, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><date>2019-08</date><risdate>2019</risdate><volume>19</volume><issue>4</issue><spage>389</spage><epage>407</epage><pages>389-407</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>The objective of the current work is to support the design of a pilot hydrogen and electricity producing plant that uses natural gas (or biomethane) as raw material, as a transition option towards a 100% renewable transportation system. The plant, with a solid oxide fuel cell (SOFC) as principal technology, is intended to be the main unit of an electric vehicle station. The refueling station has to work at different operation periods characterized by the hydrogen demand and the electricity needed for supply and self‐consumption. The same set of heat exchangers has to satisfy the heating and cooling needs of the different operation periods. In order to optimize the operating variables of the pilot plant and to provide the best heat exchanger network, the applied methodology follows a systematic procedure for multi‐objective, i.e. maximum plant efficiency and minimum number of heat exchanger matches, and multi‐period optimization. The solving strategy combines process flow modeling in steady state, superstructure‐based mathematical programming and the use of an evolutionary‐based algorithm for optimization. The results show that the plant can reach a daily weighted efficiency exceeding 60%, up to 80% when considering heat utilization.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31680792</pmid><doi>10.1002/fuce.201800200</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-6846
ispartof Fuel cells (Weinheim an der Bergstrasse, Germany), 2019-08, Vol.19 (4), p.389-407
issn 1615-6846
1615-6854
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6813630
source Wiley Journals
subjects Biogas
Conceptual Design, Electric Vehicle Station, Fuel Cell
Electricity
Electricity consumption
Equilibrium flow
Evolutionary algorithms
Heat Exchanger Network (HEN)
Heat exchangers
Hydrogen
Hydrogen production
Hydrogen Refueling Station (HRS)
Industrial Chemistry
Mathematical programming
Multi‐Objective Optimization (MOO)
Multi‐Period Optimization
Natural gas
Optimization
Original Research Paper
Original Research Papers
Process System Engineering (PSE)
Refueling
Solid Oxide Fuel Cell (SOFC)
Solid oxide fuel cells
Steady state models
Superstructures
Transportation systems
title Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Pilot%20SOFC%20System%20for%20the%20Combined%20Production%20of%20Hydrogen%20and%20Electricity%20under%20Refueling%20Station%20Requirements&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=P%C3%A9rez%E2%80%90Fortes,%20M.&rft.date=2019-08&rft.volume=19&rft.issue=4&rft.spage=389&rft.epage=407&rft.pages=389-407&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201800200&rft_dat=%3Cproquest_pubme%3E2274967843%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2274967843&rft_id=info:pmid/31680792&rfr_iscdi=true