Analysis of the Elastoplastic Response in the Torsion Test Applied to a Cylindrical Sample
This work presents an experimental and numerical analysis of the mechanical behavior of a fixed-end SAE 1045 steel cylindrical specimen during the torsion test. To this end, an iterative numerical–experimental methodology is firstly proposed to assess the material response in the tensile test using...
Gespeichert in:
Veröffentlicht in: | Materials 2019-09, Vol.12 (19), p.3200 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 3200 |
container_title | Materials |
container_volume | 12 |
creator | Toro, Sebastián Andrés Aranda, Pedro Miguel García-Herrera, Claudio Moisés Celentano, Diego Javier |
description | This work presents an experimental and numerical analysis of the mechanical behavior of a fixed-end SAE 1045 steel cylindrical specimen during the torsion test. To this end, an iterative numerical–experimental methodology is firstly proposed to assess the material response in the tensile test using a large strain elastoplasticity-based model solved in the context of the finite element method. Then, a 3D numerical simulation of the deformation process of the torsion test is tackled with this previously characterized model that proves to be able to predict the development of a high and localized triaxial stress and strain fields caused by the presence of high levels of angular deformation. Finally, the obtained numerical results are analytically studied with the cylindrical components of the Green–Lagrange strain tensor and experimentally validated with the measurements of shear strains via Digital Image Correlation (DIC) and the corresponding torque – twist angle curve. |
doi_str_mv | 10.3390/ma12193200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6804147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299774270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-75ad4abd0bf0ad51c82b464e4309c475afdff97d7041343123ab17f9407833743</originalsourceid><addsrcrecordid>eNpdkVtLwzAUx4Mobsy9-AkCvohQza1N8yKMMS8gCDpffAlpm7qMtKlJK-zbm7nh7Tycc-D_48-5AHCK0SWlAl01ChMsKEHoAIyxEFmCBWOHv_oRmIawRjEoxTkRx2BEcZqJlLMxeJ21ym6CCdDVsF9puLAq9K7bZlPCJx061wYNTfulLp0PxrVwqUMPZ11nja5g76CC8401beVNqSx8Vk1n9Qk4qpUNerqvE_Bys1jO75KHx9v7-ewhKWlO-4SnqmKqqFBRI1WluMxJwTKmGUWiZFGtq7oWvOKIYcooJlQVmNeCIZ5TyhmdgOudbzcUja5K3fZeWdl50yi_kU4Z-VdpzUq-uQ-Z5dGS8Whwvjfw7n2Im8nGhFJbq1rthiAJEYJzRjiK6Nk_dO0GH08YqZTlOUaM5JG62FGldyF4XX8Pg5Hcfk3-fI1-AkhQh9o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548810428</pqid></control><display><type>article</type><title>Analysis of the Elastoplastic Response in the Torsion Test Applied to a Cylindrical Sample</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Toro, Sebastián Andrés ; Aranda, Pedro Miguel ; García-Herrera, Claudio Moisés ; Celentano, Diego Javier</creator><creatorcontrib>Toro, Sebastián Andrés ; Aranda, Pedro Miguel ; García-Herrera, Claudio Moisés ; Celentano, Diego Javier</creatorcontrib><description>This work presents an experimental and numerical analysis of the mechanical behavior of a fixed-end SAE 1045 steel cylindrical specimen during the torsion test. To this end, an iterative numerical–experimental methodology is firstly proposed to assess the material response in the tensile test using a large strain elastoplasticity-based model solved in the context of the finite element method. Then, a 3D numerical simulation of the deformation process of the torsion test is tackled with this previously characterized model that proves to be able to predict the development of a high and localized triaxial stress and strain fields caused by the presence of high levels of angular deformation. Finally, the obtained numerical results are analytically studied with the cylindrical components of the Green–Lagrange strain tensor and experimentally validated with the measurements of shear strains via Digital Image Correlation (DIC) and the corresponding torque – twist angle curve.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12193200</identifier><identifier>PMID: 31569574</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Axial stress ; Deformation ; Digital imaging ; Elastoplasticity ; Finite element method ; Iterative methods ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Medium carbon steels ; Numerical analysis ; Simulation ; Tensile tests ; Tensors ; Torsion tests</subject><ispartof>Materials, 2019-09, Vol.12 (19), p.3200</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-75ad4abd0bf0ad51c82b464e4309c475afdff97d7041343123ab17f9407833743</citedby><cites>FETCH-LOGICAL-c383t-75ad4abd0bf0ad51c82b464e4309c475afdff97d7041343123ab17f9407833743</cites><orcidid>0000-0002-1283-8551 ; 0000-0002-7600-0619 ; 0000-0002-2004-1382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804147/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804147/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Toro, Sebastián Andrés</creatorcontrib><creatorcontrib>Aranda, Pedro Miguel</creatorcontrib><creatorcontrib>García-Herrera, Claudio Moisés</creatorcontrib><creatorcontrib>Celentano, Diego Javier</creatorcontrib><title>Analysis of the Elastoplastic Response in the Torsion Test Applied to a Cylindrical Sample</title><title>Materials</title><description>This work presents an experimental and numerical analysis of the mechanical behavior of a fixed-end SAE 1045 steel cylindrical specimen during the torsion test. To this end, an iterative numerical–experimental methodology is firstly proposed to assess the material response in the tensile test using a large strain elastoplasticity-based model solved in the context of the finite element method. Then, a 3D numerical simulation of the deformation process of the torsion test is tackled with this previously characterized model that proves to be able to predict the development of a high and localized triaxial stress and strain fields caused by the presence of high levels of angular deformation. Finally, the obtained numerical results are analytically studied with the cylindrical components of the Green–Lagrange strain tensor and experimentally validated with the measurements of shear strains via Digital Image Correlation (DIC) and the corresponding torque – twist angle curve.</description><subject>Axial stress</subject><subject>Deformation</subject><subject>Digital imaging</subject><subject>Elastoplasticity</subject><subject>Finite element method</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Medium carbon steels</subject><subject>Numerical analysis</subject><subject>Simulation</subject><subject>Tensile tests</subject><subject>Tensors</subject><subject>Torsion tests</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVtLwzAUx4Mobsy9-AkCvohQza1N8yKMMS8gCDpffAlpm7qMtKlJK-zbm7nh7Tycc-D_48-5AHCK0SWlAl01ChMsKEHoAIyxEFmCBWOHv_oRmIawRjEoxTkRx2BEcZqJlLMxeJ21ym6CCdDVsF9puLAq9K7bZlPCJx061wYNTfulLp0PxrVwqUMPZ11nja5g76CC8401beVNqSx8Vk1n9Qk4qpUNerqvE_Bys1jO75KHx9v7-ewhKWlO-4SnqmKqqFBRI1WluMxJwTKmGUWiZFGtq7oWvOKIYcooJlQVmNeCIZ5TyhmdgOudbzcUja5K3fZeWdl50yi_kU4Z-VdpzUq-uQ-Z5dGS8Whwvjfw7n2Im8nGhFJbq1rthiAJEYJzRjiK6Nk_dO0GH08YqZTlOUaM5JG62FGldyF4XX8Pg5Hcfk3-fI1-AkhQh9o</recordid><startdate>20190929</startdate><enddate>20190929</enddate><creator>Toro, Sebastián Andrés</creator><creator>Aranda, Pedro Miguel</creator><creator>García-Herrera, Claudio Moisés</creator><creator>Celentano, Diego Javier</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1283-8551</orcidid><orcidid>https://orcid.org/0000-0002-7600-0619</orcidid><orcidid>https://orcid.org/0000-0002-2004-1382</orcidid></search><sort><creationdate>20190929</creationdate><title>Analysis of the Elastoplastic Response in the Torsion Test Applied to a Cylindrical Sample</title><author>Toro, Sebastián Andrés ; Aranda, Pedro Miguel ; García-Herrera, Claudio Moisés ; Celentano, Diego Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-75ad4abd0bf0ad51c82b464e4309c475afdff97d7041343123ab17f9407833743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axial stress</topic><topic>Deformation</topic><topic>Digital imaging</topic><topic>Elastoplasticity</topic><topic>Finite element method</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Medium carbon steels</topic><topic>Numerical analysis</topic><topic>Simulation</topic><topic>Tensile tests</topic><topic>Tensors</topic><topic>Torsion tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toro, Sebastián Andrés</creatorcontrib><creatorcontrib>Aranda, Pedro Miguel</creatorcontrib><creatorcontrib>García-Herrera, Claudio Moisés</creatorcontrib><creatorcontrib>Celentano, Diego Javier</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toro, Sebastián Andrés</au><au>Aranda, Pedro Miguel</au><au>García-Herrera, Claudio Moisés</au><au>Celentano, Diego Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Elastoplastic Response in the Torsion Test Applied to a Cylindrical Sample</atitle><jtitle>Materials</jtitle><date>2019-09-29</date><risdate>2019</risdate><volume>12</volume><issue>19</issue><spage>3200</spage><pages>3200-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This work presents an experimental and numerical analysis of the mechanical behavior of a fixed-end SAE 1045 steel cylindrical specimen during the torsion test. To this end, an iterative numerical–experimental methodology is firstly proposed to assess the material response in the tensile test using a large strain elastoplasticity-based model solved in the context of the finite element method. Then, a 3D numerical simulation of the deformation process of the torsion test is tackled with this previously characterized model that proves to be able to predict the development of a high and localized triaxial stress and strain fields caused by the presence of high levels of angular deformation. Finally, the obtained numerical results are analytically studied with the cylindrical components of the Green–Lagrange strain tensor and experimentally validated with the measurements of shear strains via Digital Image Correlation (DIC) and the corresponding torque – twist angle curve.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>31569574</pmid><doi>10.3390/ma12193200</doi><orcidid>https://orcid.org/0000-0002-1283-8551</orcidid><orcidid>https://orcid.org/0000-0002-7600-0619</orcidid><orcidid>https://orcid.org/0000-0002-2004-1382</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2019-09, Vol.12 (19), p.3200 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6804147 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Axial stress Deformation Digital imaging Elastoplasticity Finite element method Iterative methods Mathematical analysis Mathematical models Mechanical properties Medium carbon steels Numerical analysis Simulation Tensile tests Tensors Torsion tests |
title | Analysis of the Elastoplastic Response in the Torsion Test Applied to a Cylindrical Sample |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Elastoplastic%20Response%20in%20the%20Torsion%20Test%20Applied%20to%20a%20Cylindrical%20Sample&rft.jtitle=Materials&rft.au=Toro,%20Sebasti%C3%A1n%20Andr%C3%A9s&rft.date=2019-09-29&rft.volume=12&rft.issue=19&rft.spage=3200&rft.pages=3200-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12193200&rft_dat=%3Cproquest_pubme%3E2299774270%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548810428&rft_id=info:pmid/31569574&rfr_iscdi=true |