Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy

Quinoa is considered as a valuable re-emergent crop due to its nutritional composition. In this study, five quinoa grains from different geographical origin (Real, CHEN 252, Regalona, BO25 and UDc9) were discriminated using a combination of FT-MIR and FT-NIR spectra as input for principal component...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food science and technology 2019-10, Vol.56 (10), p.4457-4464
Hauptverfasser: Rodríguez, Silvio D., López-Fernández, M. P., Maldonado, S., Buera, M. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4464
container_issue 10
container_start_page 4457
container_title Journal of food science and technology
container_volume 56
creator Rodríguez, Silvio D.
López-Fernández, M. P.
Maldonado, S.
Buera, M. P.
description Quinoa is considered as a valuable re-emergent crop due to its nutritional composition. In this study, five quinoa grains from different geographical origin (Real, CHEN 252, Regalona, BO25 and UDc9) were discriminated using a combination of FT-MIR and FT-NIR spectra as input for principal component analysis (PCA), cluster analysis (CA) and soft independent modelling class analogy (SIMCA). The results obtained from PCA and CA show a great power of discrimination, with an average silhouette width value of 0.96. Moreover, SIMCA showed an error rate and accuracy values of 0 and 1 respectively with only 4% misclassified samples. A relationship between each principal component and the most important variables for the discrimination were mainly due to vibrations of several oleofins groups (C–H, C–H 2 , C–H 3 ), alkene group (–CH=CH–), hydroxyl group (O–H) and Amides I and II vibrational modes.
doi_str_mv 10.1007/s13197-019-03948-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6801269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262549309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-cbf6eb122975fad92428e740c3997bd994b44c52d62e7763020de8633220c0ff3</originalsourceid><addsrcrecordid>eNp9UV1vFCEUJUZjm9o_4BOJL76MXi4MDC8mpmltk6qJqc-EAWaXZhe2MFPTfy_bbfx6kBdO4JyTe-4h5DWDdwxAva-MM606YLoDrsXQqWfkGLTqu0EAPm8YEDvG-v6InNZ6C-1wVAPCS3LEmRykVOqY-PP76ENygeZE53WgPlZX4jYmO8f2lCd6t8SULV0VG1OlP-K8ppa6vB3_4FzcdJ-vvlGb_B5-abDugptLri7vHl6RF5Pd1HD6dJ-Q7xfnN2eX3fXXT1dnH687J3o2d26cZBgZYksxWa9R4BCUAMe1VqPXWoxCuB69xKCU5IDgwyA5RwQH08RPyIeD724Zt8G7kOZiN2bX8tjyYLKN5u-fFNdmle-NHICh1M3g7ZNByXdLqLPZtnWEzcamkJdqkLfplO4VNuqbf6i3eSmpxTOIEnuhOewN8cBybRW1hOnXMAzMvkdz6NG0Hs1jj0Y1ET-IaiOnVSi_rf-j-gkJTJ4G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262549309</pqid></control><display><type>article</type><title>Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rodríguez, Silvio D. ; López-Fernández, M. P. ; Maldonado, S. ; Buera, M. P.</creator><creatorcontrib>Rodríguez, Silvio D. ; López-Fernández, M. P. ; Maldonado, S. ; Buera, M. P.</creatorcontrib><description>Quinoa is considered as a valuable re-emergent crop due to its nutritional composition. In this study, five quinoa grains from different geographical origin (Real, CHEN 252, Regalona, BO25 and UDc9) were discriminated using a combination of FT-MIR and FT-NIR spectra as input for principal component analysis (PCA), cluster analysis (CA) and soft independent modelling class analogy (SIMCA). The results obtained from PCA and CA show a great power of discrimination, with an average silhouette width value of 0.96. Moreover, SIMCA showed an error rate and accuracy values of 0 and 1 respectively with only 4% misclassified samples. A relationship between each principal component and the most important variables for the discrimination were mainly due to vibrations of several oleofins groups (C–H, C–H 2 , C–H 3 ), alkene group (–CH=CH–), hydroxyl group (O–H) and Amides I and II vibrational modes.</description><identifier>ISSN: 0022-1155</identifier><identifier>EISSN: 0975-8402</identifier><identifier>DOI: 10.1007/s13197-019-03948-7</identifier><identifier>PMID: 31686677</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Amides ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cluster analysis ; Discrimination ; Food Science ; Grain ; Hydroxyl groups ; Nutrition ; Original ; Original Article ; Principal components analysis ; Quinoa ; Spectroscopy ; Spectrum analysis ; Vibrations</subject><ispartof>Journal of food science and technology, 2019-10, Vol.56 (10), p.4457-4464</ispartof><rights>Association of Food Scientists &amp; Technologists (India) 2019</rights><rights>Journal of Food Science and Technology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-cbf6eb122975fad92428e740c3997bd994b44c52d62e7763020de8633220c0ff3</citedby><cites>FETCH-LOGICAL-c451t-cbf6eb122975fad92428e740c3997bd994b44c52d62e7763020de8633220c0ff3</cites><orcidid>0000-0001-5559-8124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801269/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801269/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids></links><search><creatorcontrib>Rodríguez, Silvio D.</creatorcontrib><creatorcontrib>López-Fernández, M. P.</creatorcontrib><creatorcontrib>Maldonado, S.</creatorcontrib><creatorcontrib>Buera, M. P.</creatorcontrib><title>Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy</title><title>Journal of food science and technology</title><addtitle>J Food Sci Technol</addtitle><description>Quinoa is considered as a valuable re-emergent crop due to its nutritional composition. In this study, five quinoa grains from different geographical origin (Real, CHEN 252, Regalona, BO25 and UDc9) were discriminated using a combination of FT-MIR and FT-NIR spectra as input for principal component analysis (PCA), cluster analysis (CA) and soft independent modelling class analogy (SIMCA). The results obtained from PCA and CA show a great power of discrimination, with an average silhouette width value of 0.96. Moreover, SIMCA showed an error rate and accuracy values of 0 and 1 respectively with only 4% misclassified samples. A relationship between each principal component and the most important variables for the discrimination were mainly due to vibrations of several oleofins groups (C–H, C–H 2 , C–H 3 ), alkene group (–CH=CH–), hydroxyl group (O–H) and Amides I and II vibrational modes.</description><subject>Amides</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cluster analysis</subject><subject>Discrimination</subject><subject>Food Science</subject><subject>Grain</subject><subject>Hydroxyl groups</subject><subject>Nutrition</subject><subject>Original</subject><subject>Original Article</subject><subject>Principal components analysis</subject><subject>Quinoa</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Vibrations</subject><issn>0022-1155</issn><issn>0975-8402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UV1vFCEUJUZjm9o_4BOJL76MXi4MDC8mpmltk6qJqc-EAWaXZhe2MFPTfy_bbfx6kBdO4JyTe-4h5DWDdwxAva-MM606YLoDrsXQqWfkGLTqu0EAPm8YEDvG-v6InNZ6C-1wVAPCS3LEmRykVOqY-PP76ENygeZE53WgPlZX4jYmO8f2lCd6t8SULV0VG1OlP-K8ppa6vB3_4FzcdJ-vvlGb_B5-abDugptLri7vHl6RF5Pd1HD6dJ-Q7xfnN2eX3fXXT1dnH687J3o2d26cZBgZYksxWa9R4BCUAMe1VqPXWoxCuB69xKCU5IDgwyA5RwQH08RPyIeD724Zt8G7kOZiN2bX8tjyYLKN5u-fFNdmle-NHICh1M3g7ZNByXdLqLPZtnWEzcamkJdqkLfplO4VNuqbf6i3eSmpxTOIEnuhOewN8cBybRW1hOnXMAzMvkdz6NG0Hs1jj0Y1ET-IaiOnVSi_rf-j-gkJTJ4G</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Rodríguez, Silvio D.</creator><creator>López-Fernández, M. P.</creator><creator>Maldonado, S.</creator><creator>Buera, M. P.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04S</scope><scope>04W</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7QR</scope><scope>7RQ</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0K</scope><scope>M7S</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5559-8124</orcidid></search><sort><creationdate>20191001</creationdate><title>Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy</title><author>Rodríguez, Silvio D. ; López-Fernández, M. P. ; Maldonado, S. ; Buera, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-cbf6eb122975fad92428e740c3997bd994b44c52d62e7763020de8633220c0ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amides</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cluster analysis</topic><topic>Discrimination</topic><topic>Food Science</topic><topic>Grain</topic><topic>Hydroxyl groups</topic><topic>Nutrition</topic><topic>Original</topic><topic>Original Article</topic><topic>Principal components analysis</topic><topic>Quinoa</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez, Silvio D.</creatorcontrib><creatorcontrib>López-Fernández, M. P.</creatorcontrib><creatorcontrib>Maldonado, S.</creatorcontrib><creatorcontrib>Buera, M. P.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Business</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Career &amp; Technical Education Database</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of food science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez, Silvio D.</au><au>López-Fernández, M. P.</au><au>Maldonado, S.</au><au>Buera, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy</atitle><jtitle>Journal of food science and technology</jtitle><stitle>J Food Sci Technol</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>56</volume><issue>10</issue><spage>4457</spage><epage>4464</epage><pages>4457-4464</pages><issn>0022-1155</issn><eissn>0975-8402</eissn><abstract>Quinoa is considered as a valuable re-emergent crop due to its nutritional composition. In this study, five quinoa grains from different geographical origin (Real, CHEN 252, Regalona, BO25 and UDc9) were discriminated using a combination of FT-MIR and FT-NIR spectra as input for principal component analysis (PCA), cluster analysis (CA) and soft independent modelling class analogy (SIMCA). The results obtained from PCA and CA show a great power of discrimination, with an average silhouette width value of 0.96. Moreover, SIMCA showed an error rate and accuracy values of 0 and 1 respectively with only 4% misclassified samples. A relationship between each principal component and the most important variables for the discrimination were mainly due to vibrations of several oleofins groups (C–H, C–H 2 , C–H 3 ), alkene group (–CH=CH–), hydroxyl group (O–H) and Amides I and II vibrational modes.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>31686677</pmid><doi>10.1007/s13197-019-03948-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5559-8124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1155
ispartof Journal of food science and technology, 2019-10, Vol.56 (10), p.4457-4464
issn 0022-1155
0975-8402
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6801269
source EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Amides
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Cluster analysis
Discrimination
Food Science
Grain
Hydroxyl groups
Nutrition
Original
Original Article
Principal components analysis
Quinoa
Spectroscopy
Spectrum analysis
Vibrations
title Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20on%20the%20discrimination%20of%20quinoa%20grains%20with%20a%20combination%20of%20FT-MIR%20and%20FT-NIR%20spectroscopy&rft.jtitle=Journal%20of%20food%20science%20and%20technology&rft.au=Rodr%C3%ADguez,%20Silvio%20D.&rft.date=2019-10-01&rft.volume=56&rft.issue=10&rft.spage=4457&rft.epage=4464&rft.pages=4457-4464&rft.issn=0022-1155&rft.eissn=0975-8402&rft_id=info:doi/10.1007/s13197-019-03948-7&rft_dat=%3Cproquest_pubme%3E2262549309%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262549309&rft_id=info:pmid/31686677&rfr_iscdi=true