Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy
Quinoa is considered as a valuable re-emergent crop due to its nutritional composition. In this study, five quinoa grains from different geographical origin (Real, CHEN 252, Regalona, BO25 and UDc9) were discriminated using a combination of FT-MIR and FT-NIR spectra as input for principal component...
Gespeichert in:
Veröffentlicht in: | Journal of food science and technology 2019-10, Vol.56 (10), p.4457-4464 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4464 |
---|---|
container_issue | 10 |
container_start_page | 4457 |
container_title | Journal of food science and technology |
container_volume | 56 |
creator | Rodríguez, Silvio D. López-Fernández, M. P. Maldonado, S. Buera, M. P. |
description | Quinoa is considered as a valuable re-emergent crop due to its nutritional composition. In this study, five quinoa grains from different geographical origin (Real, CHEN 252, Regalona, BO25 and UDc9) were discriminated using a combination of FT-MIR and FT-NIR spectra as input for principal component analysis (PCA), cluster analysis (CA) and soft independent modelling class analogy (SIMCA). The results obtained from PCA and CA show a great power of discrimination, with an average silhouette width value of 0.96. Moreover, SIMCA showed an error rate and accuracy values of 0 and 1 respectively with only 4% misclassified samples. A relationship between each principal component and the most important variables for the discrimination were mainly due to vibrations of several oleofins groups (C–H, C–H
2
, C–H
3
), alkene group (–CH=CH–), hydroxyl group (O–H) and Amides I and II vibrational modes. |
doi_str_mv | 10.1007/s13197-019-03948-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6801269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262549309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-cbf6eb122975fad92428e740c3997bd994b44c52d62e7763020de8633220c0ff3</originalsourceid><addsrcrecordid>eNp9UV1vFCEUJUZjm9o_4BOJL76MXi4MDC8mpmltk6qJqc-EAWaXZhe2MFPTfy_bbfx6kBdO4JyTe-4h5DWDdwxAva-MM606YLoDrsXQqWfkGLTqu0EAPm8YEDvG-v6InNZ6C-1wVAPCS3LEmRykVOqY-PP76ENygeZE53WgPlZX4jYmO8f2lCd6t8SULV0VG1OlP-K8ppa6vB3_4FzcdJ-vvlGb_B5-abDugptLri7vHl6RF5Pd1HD6dJ-Q7xfnN2eX3fXXT1dnH687J3o2d26cZBgZYksxWa9R4BCUAMe1VqPXWoxCuB69xKCU5IDgwyA5RwQH08RPyIeD724Zt8G7kOZiN2bX8tjyYLKN5u-fFNdmle-NHICh1M3g7ZNByXdLqLPZtnWEzcamkJdqkLfplO4VNuqbf6i3eSmpxTOIEnuhOewN8cBybRW1hOnXMAzMvkdz6NG0Hs1jj0Y1ET-IaiOnVSi_rf-j-gkJTJ4G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262549309</pqid></control><display><type>article</type><title>Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rodríguez, Silvio D. ; López-Fernández, M. P. ; Maldonado, S. ; Buera, M. P.</creator><creatorcontrib>Rodríguez, Silvio D. ; López-Fernández, M. P. ; Maldonado, S. ; Buera, M. P.</creatorcontrib><description>Quinoa is considered as a valuable re-emergent crop due to its nutritional composition. In this study, five quinoa grains from different geographical origin (Real, CHEN 252, Regalona, BO25 and UDc9) were discriminated using a combination of FT-MIR and FT-NIR spectra as input for principal component analysis (PCA), cluster analysis (CA) and soft independent modelling class analogy (SIMCA). The results obtained from PCA and CA show a great power of discrimination, with an average silhouette width value of 0.96. Moreover, SIMCA showed an error rate and accuracy values of 0 and 1 respectively with only 4% misclassified samples. A relationship between each principal component and the most important variables for the discrimination were mainly due to vibrations of several oleofins groups (C–H, C–H
2
, C–H
3
), alkene group (–CH=CH–), hydroxyl group (O–H) and Amides I and II vibrational modes.</description><identifier>ISSN: 0022-1155</identifier><identifier>EISSN: 0975-8402</identifier><identifier>DOI: 10.1007/s13197-019-03948-7</identifier><identifier>PMID: 31686677</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Amides ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cluster analysis ; Discrimination ; Food Science ; Grain ; Hydroxyl groups ; Nutrition ; Original ; Original Article ; Principal components analysis ; Quinoa ; Spectroscopy ; Spectrum analysis ; Vibrations</subject><ispartof>Journal of food science and technology, 2019-10, Vol.56 (10), p.4457-4464</ispartof><rights>Association of Food Scientists & Technologists (India) 2019</rights><rights>Journal of Food Science and Technology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-cbf6eb122975fad92428e740c3997bd994b44c52d62e7763020de8633220c0ff3</citedby><cites>FETCH-LOGICAL-c451t-cbf6eb122975fad92428e740c3997bd994b44c52d62e7763020de8633220c0ff3</cites><orcidid>0000-0001-5559-8124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801269/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6801269/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids></links><search><creatorcontrib>Rodríguez, Silvio D.</creatorcontrib><creatorcontrib>López-Fernández, M. P.</creatorcontrib><creatorcontrib>Maldonado, S.</creatorcontrib><creatorcontrib>Buera, M. P.</creatorcontrib><title>Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy</title><title>Journal of food science and technology</title><addtitle>J Food Sci Technol</addtitle><description>Quinoa is considered as a valuable re-emergent crop due to its nutritional composition. In this study, five quinoa grains from different geographical origin (Real, CHEN 252, Regalona, BO25 and UDc9) were discriminated using a combination of FT-MIR and FT-NIR spectra as input for principal component analysis (PCA), cluster analysis (CA) and soft independent modelling class analogy (SIMCA). The results obtained from PCA and CA show a great power of discrimination, with an average silhouette width value of 0.96. Moreover, SIMCA showed an error rate and accuracy values of 0 and 1 respectively with only 4% misclassified samples. A relationship between each principal component and the most important variables for the discrimination were mainly due to vibrations of several oleofins groups (C–H, C–H
2
, C–H
3
), alkene group (–CH=CH–), hydroxyl group (O–H) and Amides I and II vibrational modes.</description><subject>Amides</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cluster analysis</subject><subject>Discrimination</subject><subject>Food Science</subject><subject>Grain</subject><subject>Hydroxyl groups</subject><subject>Nutrition</subject><subject>Original</subject><subject>Original Article</subject><subject>Principal components analysis</subject><subject>Quinoa</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Vibrations</subject><issn>0022-1155</issn><issn>0975-8402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UV1vFCEUJUZjm9o_4BOJL76MXi4MDC8mpmltk6qJqc-EAWaXZhe2MFPTfy_bbfx6kBdO4JyTe-4h5DWDdwxAva-MM606YLoDrsXQqWfkGLTqu0EAPm8YEDvG-v6InNZ6C-1wVAPCS3LEmRykVOqY-PP76ENygeZE53WgPlZX4jYmO8f2lCd6t8SULV0VG1OlP-K8ppa6vB3_4FzcdJ-vvlGb_B5-abDugptLri7vHl6RF5Pd1HD6dJ-Q7xfnN2eX3fXXT1dnH687J3o2d26cZBgZYksxWa9R4BCUAMe1VqPXWoxCuB69xKCU5IDgwyA5RwQH08RPyIeD724Zt8G7kOZiN2bX8tjyYLKN5u-fFNdmle-NHICh1M3g7ZNByXdLqLPZtnWEzcamkJdqkLfplO4VNuqbf6i3eSmpxTOIEnuhOewN8cBybRW1hOnXMAzMvkdz6NG0Hs1jj0Y1ET-IaiOnVSi_rf-j-gkJTJ4G</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Rodríguez, Silvio D.</creator><creator>López-Fernández, M. P.</creator><creator>Maldonado, S.</creator><creator>Buera, M. P.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04S</scope><scope>04W</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7QR</scope><scope>7RQ</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0K</scope><scope>M7S</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5559-8124</orcidid></search><sort><creationdate>20191001</creationdate><title>Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy</title><author>Rodríguez, Silvio D. ; López-Fernández, M. P. ; Maldonado, S. ; Buera, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-cbf6eb122975fad92428e740c3997bd994b44c52d62e7763020de8633220c0ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amides</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cluster analysis</topic><topic>Discrimination</topic><topic>Food Science</topic><topic>Grain</topic><topic>Hydroxyl groups</topic><topic>Nutrition</topic><topic>Original</topic><topic>Original Article</topic><topic>Principal components analysis</topic><topic>Quinoa</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez, Silvio D.</creatorcontrib><creatorcontrib>López-Fernández, M. P.</creatorcontrib><creatorcontrib>Maldonado, S.</creatorcontrib><creatorcontrib>Buera, M. P.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Business</collection><collection>India Database: Science & Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Career & Technical Education Database</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of food science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez, Silvio D.</au><au>López-Fernández, M. P.</au><au>Maldonado, S.</au><au>Buera, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy</atitle><jtitle>Journal of food science and technology</jtitle><stitle>J Food Sci Technol</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>56</volume><issue>10</issue><spage>4457</spage><epage>4464</epage><pages>4457-4464</pages><issn>0022-1155</issn><eissn>0975-8402</eissn><abstract>Quinoa is considered as a valuable re-emergent crop due to its nutritional composition. In this study, five quinoa grains from different geographical origin (Real, CHEN 252, Regalona, BO25 and UDc9) were discriminated using a combination of FT-MIR and FT-NIR spectra as input for principal component analysis (PCA), cluster analysis (CA) and soft independent modelling class analogy (SIMCA). The results obtained from PCA and CA show a great power of discrimination, with an average silhouette width value of 0.96. Moreover, SIMCA showed an error rate and accuracy values of 0 and 1 respectively with only 4% misclassified samples. A relationship between each principal component and the most important variables for the discrimination were mainly due to vibrations of several oleofins groups (C–H, C–H
2
, C–H
3
), alkene group (–CH=CH–), hydroxyl group (O–H) and Amides I and II vibrational modes.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>31686677</pmid><doi>10.1007/s13197-019-03948-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5559-8124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1155 |
ispartof | Journal of food science and technology, 2019-10, Vol.56 (10), p.4457-4464 |
issn | 0022-1155 0975-8402 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6801269 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Amides Chemistry Chemistry and Materials Science Chemistry/Food Science Cluster analysis Discrimination Food Science Grain Hydroxyl groups Nutrition Original Original Article Principal components analysis Quinoa Spectroscopy Spectrum analysis Vibrations |
title | Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20on%20the%20discrimination%20of%20quinoa%20grains%20with%20a%20combination%20of%20FT-MIR%20and%20FT-NIR%20spectroscopy&rft.jtitle=Journal%20of%20food%20science%20and%20technology&rft.au=Rodr%C3%ADguez,%20Silvio%20D.&rft.date=2019-10-01&rft.volume=56&rft.issue=10&rft.spage=4457&rft.epage=4464&rft.pages=4457-4464&rft.issn=0022-1155&rft.eissn=0975-8402&rft_id=info:doi/10.1007/s13197-019-03948-7&rft_dat=%3Cproquest_pubme%3E2262549309%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262549309&rft_id=info:pmid/31686677&rfr_iscdi=true |