Structure of a C₂S₂M₂N₂-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii
Photosystem II (PSII) in the thylakoid membranes of plants, algae, and cyanobacteria catalyzes light-induced oxidation of water by which light energy is converted to chemical energy and molecular oxygen is produced. In higher plants and most eukaryotic algae, the PSII core is surrounded by variable...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-10, Vol.116 (42), p.21246-21255 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21255 |
---|---|
container_issue | 42 |
container_start_page | 21246 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Shen, Liangliang Huang, Zihui Chang, Shenghai Wang, Wenda Wang, Jingfen Kuang, Tingyun Han, Guangye Shen, Jian-Ren Zhang, Xing |
description | Photosystem II (PSII) in the thylakoid membranes of plants, algae, and cyanobacteria catalyzes light-induced oxidation of water by which light energy is converted to chemical energy and molecular oxygen is produced. In higher plants and most eukaryotic algae, the PSII core is surrounded by variable numbers of light-harvesting antenna complex II (LHCII), forming a PSII–LHCII supercomplex. In order to harvest energy efficiently at low–light-intensity conditions under water, a complete PSII–LHCII supercomplex (C₂S₂M₂N₂) of the green alga Chlamydomonas reinhardtii (Cr) contains more antenna subunits and pigments than the dominant PSII–LHCII supercomplex (C₂S₂M₂) of plants. The detailed structure and energy transfer pathway of the Cr-PSII–LHCII remain unknown. Here we report a cryoelectron microscopy structure of a complete, C₂S₂M₂N₂-type PSII–LHCII supercomplex from C. reinhardtii at 3.37-Å resolution. The results show that the Cr-C₂S₂M₂N₂ supercomplex is organized as a dimer, with 3 LHCII trimers, 1 CP26, and 1 CP29 peripheral antenna subunits surrounding each PSII core. The N-LHCII trimer partially occupies the position of CP24, which is present in the higher-plant PSII–LHCII but absent in the green alga. The M trimer is rotated relative to the corresponding M trimer in plant PSII–LHCII. In addition, some unique features were found in the green algal PSII core. The arrangement of a huge number of pigments allowed us to deduce possible energy transfer pathways from the peripheral antennae to the PSII core. |
doi_str_mv | 10.1073/pnas.1912462116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6800332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26857820</jstor_id><sourcerecordid>26857820</sourcerecordid><originalsourceid>FETCH-LOGICAL-j293t-a5725dacb9365e908452a4abf70602bb64ff2834f0fc5f953163907386707c2f3</originalsourceid><addsrcrecordid>eNpdkM2KFDEURoM4OO3o2pUQcOOmZm7-k40gjToF7YzQui5S1Ul3NVWVMkmJvZN5Bd9wnsTADIIuPu7iHg7fvQi9InBJQLGrebLpkhhCuaSEyCdoRcCQSnIDT9EKgKpKc8rP0fOUjgBghIZn6JwRoUASvkLDNsely0t0OHhs8fr-7m5b8rnkpqTKp9nhL9u6vv_1e3O9rmucltnFLozz4H5iH8OI88HhfXRuwnbYF8dhsONpF8ZQ2uHo-ulg4y73_Qt05u2Q3MvHeYG-ffzwdX1dbW4_1ev3m-pIDcuVFYqKne1aw6RwBjQX1HLb-tIZaNtK7j3VjHvwnfBGMCKZKd_QUoHqqGcX6N2Dd17a0e06N-Voh2aO_WjjqQm2b_7dTP2h2YcfjdQAjNEiePsoiOH74lJuxj51bhjs5MKSGkqNUVIZpgv65j_0GJY4lfMaykARJomBQr1-oI4ph_i3CZVaKE2B_QFhHI61</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307136190</pqid></control><display><type>article</type><title>Structure of a C₂S₂M₂N₂-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Shen, Liangliang ; Huang, Zihui ; Chang, Shenghai ; Wang, Wenda ; Wang, Jingfen ; Kuang, Tingyun ; Han, Guangye ; Shen, Jian-Ren ; Zhang, Xing</creator><creatorcontrib>Shen, Liangliang ; Huang, Zihui ; Chang, Shenghai ; Wang, Wenda ; Wang, Jingfen ; Kuang, Tingyun ; Han, Guangye ; Shen, Jian-Ren ; Zhang, Xing</creatorcontrib><description>Photosystem II (PSII) in the thylakoid membranes of plants, algae, and cyanobacteria catalyzes light-induced oxidation of water by which light energy is converted to chemical energy and molecular oxygen is produced. In higher plants and most eukaryotic algae, the PSII core is surrounded by variable numbers of light-harvesting antenna complex II (LHCII), forming a PSII–LHCII supercomplex. In order to harvest energy efficiently at low–light-intensity conditions under water, a complete PSII–LHCII supercomplex (C₂S₂M₂N₂) of the green alga Chlamydomonas reinhardtii (Cr) contains more antenna subunits and pigments than the dominant PSII–LHCII supercomplex (C₂S₂M₂) of plants. The detailed structure and energy transfer pathway of the Cr-PSII–LHCII remain unknown. Here we report a cryoelectron microscopy structure of a complete, C₂S₂M₂N₂-type PSII–LHCII supercomplex from C. reinhardtii at 3.37-Å resolution. The results show that the Cr-C₂S₂M₂N₂ supercomplex is organized as a dimer, with 3 LHCII trimers, 1 CP26, and 1 CP29 peripheral antenna subunits surrounding each PSII core. The N-LHCII trimer partially occupies the position of CP24, which is present in the higher-plant PSII–LHCII but absent in the green alga. The M trimer is rotated relative to the corresponding M trimer in plant PSII–LHCII. In addition, some unique features were found in the green algal PSII core. The arrangement of a huge number of pigments allowed us to deduce possible energy transfer pathways from the peripheral antennae to the PSII core.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1912462116</identifier><identifier>PMID: 31570614</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Algae ; Antennae ; Antennas ; Aquatic plants ; Biological Sciences ; Chemical energy ; Chlamydomonas reinhardtii ; Chlorophyll ; Cyanobacteria ; Dimers ; Energy harvesting ; Energy transfer ; Luminous intensity ; Membranes ; Organic chemistry ; Oxidation ; Oxygen ; Photosystem II ; Physical Sciences ; Pigments ; Thylakoid membranes ; Trimers</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-10, Vol.116 (42), p.21246-21255</ispartof><rights>Copyright National Academy of Sciences Oct 15, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26857820$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26857820$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27902,27903,53768,53770,57994,58227</link.rule.ids></links><search><creatorcontrib>Shen, Liangliang</creatorcontrib><creatorcontrib>Huang, Zihui</creatorcontrib><creatorcontrib>Chang, Shenghai</creatorcontrib><creatorcontrib>Wang, Wenda</creatorcontrib><creatorcontrib>Wang, Jingfen</creatorcontrib><creatorcontrib>Kuang, Tingyun</creatorcontrib><creatorcontrib>Han, Guangye</creatorcontrib><creatorcontrib>Shen, Jian-Ren</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><title>Structure of a C₂S₂M₂N₂-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Photosystem II (PSII) in the thylakoid membranes of plants, algae, and cyanobacteria catalyzes light-induced oxidation of water by which light energy is converted to chemical energy and molecular oxygen is produced. In higher plants and most eukaryotic algae, the PSII core is surrounded by variable numbers of light-harvesting antenna complex II (LHCII), forming a PSII–LHCII supercomplex. In order to harvest energy efficiently at low–light-intensity conditions under water, a complete PSII–LHCII supercomplex (C₂S₂M₂N₂) of the green alga Chlamydomonas reinhardtii (Cr) contains more antenna subunits and pigments than the dominant PSII–LHCII supercomplex (C₂S₂M₂) of plants. The detailed structure and energy transfer pathway of the Cr-PSII–LHCII remain unknown. Here we report a cryoelectron microscopy structure of a complete, C₂S₂M₂N₂-type PSII–LHCII supercomplex from C. reinhardtii at 3.37-Å resolution. The results show that the Cr-C₂S₂M₂N₂ supercomplex is organized as a dimer, with 3 LHCII trimers, 1 CP26, and 1 CP29 peripheral antenna subunits surrounding each PSII core. The N-LHCII trimer partially occupies the position of CP24, which is present in the higher-plant PSII–LHCII but absent in the green alga. The M trimer is rotated relative to the corresponding M trimer in plant PSII–LHCII. In addition, some unique features were found in the green algal PSII core. The arrangement of a huge number of pigments allowed us to deduce possible energy transfer pathways from the peripheral antennae to the PSII core.</description><subject>Algae</subject><subject>Antennae</subject><subject>Antennas</subject><subject>Aquatic plants</subject><subject>Biological Sciences</subject><subject>Chemical energy</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlorophyll</subject><subject>Cyanobacteria</subject><subject>Dimers</subject><subject>Energy harvesting</subject><subject>Energy transfer</subject><subject>Luminous intensity</subject><subject>Membranes</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Photosystem II</subject><subject>Physical Sciences</subject><subject>Pigments</subject><subject>Thylakoid membranes</subject><subject>Trimers</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkM2KFDEURoM4OO3o2pUQcOOmZm7-k40gjToF7YzQui5S1Ul3NVWVMkmJvZN5Bd9wnsTADIIuPu7iHg7fvQi9InBJQLGrebLpkhhCuaSEyCdoRcCQSnIDT9EKgKpKc8rP0fOUjgBghIZn6JwRoUASvkLDNsely0t0OHhs8fr-7m5b8rnkpqTKp9nhL9u6vv_1e3O9rmucltnFLozz4H5iH8OI88HhfXRuwnbYF8dhsONpF8ZQ2uHo-ulg4y73_Qt05u2Q3MvHeYG-ffzwdX1dbW4_1ev3m-pIDcuVFYqKne1aw6RwBjQX1HLb-tIZaNtK7j3VjHvwnfBGMCKZKd_QUoHqqGcX6N2Dd17a0e06N-Voh2aO_WjjqQm2b_7dTP2h2YcfjdQAjNEiePsoiOH74lJuxj51bhjs5MKSGkqNUVIZpgv65j_0GJY4lfMaykARJomBQr1-oI4ph_i3CZVaKE2B_QFhHI61</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Shen, Liangliang</creator><creator>Huang, Zihui</creator><creator>Chang, Shenghai</creator><creator>Wang, Wenda</creator><creator>Wang, Jingfen</creator><creator>Kuang, Tingyun</creator><creator>Han, Guangye</creator><creator>Shen, Jian-Ren</creator><creator>Zhang, Xing</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191015</creationdate><title>Structure of a C₂S₂M₂N₂-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii</title><author>Shen, Liangliang ; Huang, Zihui ; Chang, Shenghai ; Wang, Wenda ; Wang, Jingfen ; Kuang, Tingyun ; Han, Guangye ; Shen, Jian-Ren ; Zhang, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j293t-a5725dacb9365e908452a4abf70602bb64ff2834f0fc5f953163907386707c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algae</topic><topic>Antennae</topic><topic>Antennas</topic><topic>Aquatic plants</topic><topic>Biological Sciences</topic><topic>Chemical energy</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlorophyll</topic><topic>Cyanobacteria</topic><topic>Dimers</topic><topic>Energy harvesting</topic><topic>Energy transfer</topic><topic>Luminous intensity</topic><topic>Membranes</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Photosystem II</topic><topic>Physical Sciences</topic><topic>Pigments</topic><topic>Thylakoid membranes</topic><topic>Trimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Liangliang</creatorcontrib><creatorcontrib>Huang, Zihui</creatorcontrib><creatorcontrib>Chang, Shenghai</creatorcontrib><creatorcontrib>Wang, Wenda</creatorcontrib><creatorcontrib>Wang, Jingfen</creatorcontrib><creatorcontrib>Kuang, Tingyun</creatorcontrib><creatorcontrib>Han, Guangye</creatorcontrib><creatorcontrib>Shen, Jian-Ren</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Liangliang</au><au>Huang, Zihui</au><au>Chang, Shenghai</au><au>Wang, Wenda</au><au>Wang, Jingfen</au><au>Kuang, Tingyun</au><au>Han, Guangye</au><au>Shen, Jian-Ren</au><au>Zhang, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of a C₂S₂M₂N₂-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>116</volume><issue>42</issue><spage>21246</spage><epage>21255</epage><pages>21246-21255</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Photosystem II (PSII) in the thylakoid membranes of plants, algae, and cyanobacteria catalyzes light-induced oxidation of water by which light energy is converted to chemical energy and molecular oxygen is produced. In higher plants and most eukaryotic algae, the PSII core is surrounded by variable numbers of light-harvesting antenna complex II (LHCII), forming a PSII–LHCII supercomplex. In order to harvest energy efficiently at low–light-intensity conditions under water, a complete PSII–LHCII supercomplex (C₂S₂M₂N₂) of the green alga Chlamydomonas reinhardtii (Cr) contains more antenna subunits and pigments than the dominant PSII–LHCII supercomplex (C₂S₂M₂) of plants. The detailed structure and energy transfer pathway of the Cr-PSII–LHCII remain unknown. Here we report a cryoelectron microscopy structure of a complete, C₂S₂M₂N₂-type PSII–LHCII supercomplex from C. reinhardtii at 3.37-Å resolution. The results show that the Cr-C₂S₂M₂N₂ supercomplex is organized as a dimer, with 3 LHCII trimers, 1 CP26, and 1 CP29 peripheral antenna subunits surrounding each PSII core. The N-LHCII trimer partially occupies the position of CP24, which is present in the higher-plant PSII–LHCII but absent in the green alga. The M trimer is rotated relative to the corresponding M trimer in plant PSII–LHCII. In addition, some unique features were found in the green algal PSII core. The arrangement of a huge number of pigments allowed us to deduce possible energy transfer pathways from the peripheral antennae to the PSII core.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>31570614</pmid><doi>10.1073/pnas.1912462116</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-10, Vol.116 (42), p.21246-21255 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6800332 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algae Antennae Antennas Aquatic plants Biological Sciences Chemical energy Chlamydomonas reinhardtii Chlorophyll Cyanobacteria Dimers Energy harvesting Energy transfer Luminous intensity Membranes Organic chemistry Oxidation Oxygen Photosystem II Physical Sciences Pigments Thylakoid membranes Trimers |
title | Structure of a C₂S₂M₂N₂-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20a%20C%E2%82%82S%E2%82%82M%E2%82%82N%E2%82%82-type%20PSII%E2%80%93LHCII%20supercomplex%20from%20the%20green%20alga%20Chlamydomonas%20reinhardtii&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Shen,%20Liangliang&rft.date=2019-10-15&rft.volume=116&rft.issue=42&rft.spage=21246&rft.epage=21255&rft.pages=21246-21255&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1912462116&rft_dat=%3Cjstor_pubme%3E26857820%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307136190&rft_id=info:pmid/31570614&rft_jstor_id=26857820&rfr_iscdi=true |