Generation of highly integrated multiple vivid colours using a three-dimensional broadband perfect absorber

The colour printing technology based on interactions between geometric structures and light has various advantages over the pigment-based colour technology in terms of nontoxicity and ultrasmall pixel size. The asymmetric Fabry–Perot (F–P) cavity absorber is the simplest light-interacting structure,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-10, Vol.9 (1), p.14859-9, Article 14859
Hauptverfasser: Kim, Soo-Jung, Jung, Pil-Hoon, Kim, Wonjoong, Lee, Heon, Hong, Sung-Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 14859
container_title Scientific reports
container_volume 9
creator Kim, Soo-Jung
Jung, Pil-Hoon
Kim, Wonjoong
Lee, Heon
Hong, Sung-Hoon
description The colour printing technology based on interactions between geometric structures and light has various advantages over the pigment-based colour technology in terms of nontoxicity and ultrasmall pixel size. The asymmetric Fabry–Perot (F–P) cavity absorber is the simplest light-interacting structure, which can easily represent and control the colour by the thickness of the dielectric layer. However, for practical applications, an advanced manufacturing technique for the simultaneous generation of multiple reflective colours is required. In this study, we demonstrate F–P cavity absorbers with micropixels by overcoming the difficulties of multi-level pattern fabrication using a nanoimprinting approach. Our asymmetric F–P cavity absorber exhibited a high absorption (approximately 99%) in a wide visible light range upon the incorporation of lossy metallic materials, yielding vivid colours. A high-resolution image of eight different reflective colours was obtained by a one-step process. This demonstrates the potential of this technology for device applications such as high-resolution colour displays and colour patterns used for security functions.
doi_str_mv 10.1038/s41598-019-49906-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6795891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306493320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-60d667e5226a279b323ad392281697cc78beee300f742e2559fe606fdf051f543</originalsourceid><addsrcrecordid>eNp9kU9vFiEQxonRtE3bL9CDIfHiZZU_C7tcTEyj1aSJl3om7DLsS2XhFXbfpN--1K21epDLEOY3zzDzIHRByTtKeP--tFSoviFUNa1SRDb8BTphpBUN44y9fHY_Ruel3JJ6BFMtVUfomFNJlVT9CfpxBRGyWXyKODm889Mu3GEfF5jqK1g8r2Hx-wD44A_e4jGFtOaC1-LjhA1edhmgsX6GWKqGCXjIydjBRIv3kB2MCzZDSXmAfIZeORMKnD_GU_T986ebyy_N9berr5cfr5tRsG5pJLFSdiAYk4Z1auCMG8sVYz2VqhvHrh8AgBPiupYBE0I5kEQ664igTrT8FH3YdPfrMIMdIS7ZBL3Pfjb5Tifj9d-Z6Hd6SgctOyV6RavA20eBnH6uUBY9-zJCCCZCWotmnMhWcc5IRd_8g97W_dQ9bBQjtG8fKLZRY06lZHBPn6FEP9ipNzt1tVP_slPzWvT6-RhPJb_NqwDfgFJTcYL8p_d_ZO8BA-SsoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306201840</pqid></control><display><type>article</type><title>Generation of highly integrated multiple vivid colours using a three-dimensional broadband perfect absorber</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Kim, Soo-Jung ; Jung, Pil-Hoon ; Kim, Wonjoong ; Lee, Heon ; Hong, Sung-Hoon</creator><creatorcontrib>Kim, Soo-Jung ; Jung, Pil-Hoon ; Kim, Wonjoong ; Lee, Heon ; Hong, Sung-Hoon</creatorcontrib><description>The colour printing technology based on interactions between geometric structures and light has various advantages over the pigment-based colour technology in terms of nontoxicity and ultrasmall pixel size. The asymmetric Fabry–Perot (F–P) cavity absorber is the simplest light-interacting structure, which can easily represent and control the colour by the thickness of the dielectric layer. However, for practical applications, an advanced manufacturing technique for the simultaneous generation of multiple reflective colours is required. In this study, we demonstrate F–P cavity absorbers with micropixels by overcoming the difficulties of multi-level pattern fabrication using a nanoimprinting approach. Our asymmetric F–P cavity absorber exhibited a high absorption (approximately 99%) in a wide visible light range upon the incorporation of lossy metallic materials, yielding vivid colours. A high-resolution image of eight different reflective colours was obtained by a one-step process. This demonstrates the potential of this technology for device applications such as high-resolution colour displays and colour patterns used for security functions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-49906-3</identifier><identifier>PMID: 31619698</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/301 ; 639/624 ; 639/925 ; Color ; Design ; Dielectric properties ; Fabrication ; Humanities and Social Sciences ; multidisciplinary ; Nanocrystals ; Science ; Science (multidisciplinary) ; Simulation</subject><ispartof>Scientific reports, 2019-10, Vol.9 (1), p.14859-9, Article 14859</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-60d667e5226a279b323ad392281697cc78beee300f742e2559fe606fdf051f543</citedby><cites>FETCH-LOGICAL-c527t-60d667e5226a279b323ad392281697cc78beee300f742e2559fe606fdf051f543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795891/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795891/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31619698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Soo-Jung</creatorcontrib><creatorcontrib>Jung, Pil-Hoon</creatorcontrib><creatorcontrib>Kim, Wonjoong</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Hong, Sung-Hoon</creatorcontrib><title>Generation of highly integrated multiple vivid colours using a three-dimensional broadband perfect absorber</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The colour printing technology based on interactions between geometric structures and light has various advantages over the pigment-based colour technology in terms of nontoxicity and ultrasmall pixel size. The asymmetric Fabry–Perot (F–P) cavity absorber is the simplest light-interacting structure, which can easily represent and control the colour by the thickness of the dielectric layer. However, for practical applications, an advanced manufacturing technique for the simultaneous generation of multiple reflective colours is required. In this study, we demonstrate F–P cavity absorbers with micropixels by overcoming the difficulties of multi-level pattern fabrication using a nanoimprinting approach. Our asymmetric F–P cavity absorber exhibited a high absorption (approximately 99%) in a wide visible light range upon the incorporation of lossy metallic materials, yielding vivid colours. A high-resolution image of eight different reflective colours was obtained by a one-step process. This demonstrates the potential of this technology for device applications such as high-resolution colour displays and colour patterns used for security functions.</description><subject>639/166</subject><subject>639/301</subject><subject>639/624</subject><subject>639/925</subject><subject>Color</subject><subject>Design</subject><subject>Dielectric properties</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanocrystals</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9vFiEQxonRtE3bL9CDIfHiZZU_C7tcTEyj1aSJl3om7DLsS2XhFXbfpN--1K21epDLEOY3zzDzIHRByTtKeP--tFSoviFUNa1SRDb8BTphpBUN44y9fHY_Ruel3JJ6BFMtVUfomFNJlVT9CfpxBRGyWXyKODm889Mu3GEfF5jqK1g8r2Hx-wD44A_e4jGFtOaC1-LjhA1edhmgsX6GWKqGCXjIydjBRIv3kB2MCzZDSXmAfIZeORMKnD_GU_T986ebyy_N9berr5cfr5tRsG5pJLFSdiAYk4Z1auCMG8sVYz2VqhvHrh8AgBPiupYBE0I5kEQ664igTrT8FH3YdPfrMIMdIS7ZBL3Pfjb5Tifj9d-Z6Hd6SgctOyV6RavA20eBnH6uUBY9-zJCCCZCWotmnMhWcc5IRd_8g97W_dQ9bBQjtG8fKLZRY06lZHBPn6FEP9ipNzt1tVP_slPzWvT6-RhPJb_NqwDfgFJTcYL8p_d_ZO8BA-SsoA</recordid><startdate>20191016</startdate><enddate>20191016</enddate><creator>Kim, Soo-Jung</creator><creator>Jung, Pil-Hoon</creator><creator>Kim, Wonjoong</creator><creator>Lee, Heon</creator><creator>Hong, Sung-Hoon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191016</creationdate><title>Generation of highly integrated multiple vivid colours using a three-dimensional broadband perfect absorber</title><author>Kim, Soo-Jung ; Jung, Pil-Hoon ; Kim, Wonjoong ; Lee, Heon ; Hong, Sung-Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-60d667e5226a279b323ad392281697cc78beee300f742e2559fe606fdf051f543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/166</topic><topic>639/301</topic><topic>639/624</topic><topic>639/925</topic><topic>Color</topic><topic>Design</topic><topic>Dielectric properties</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanocrystals</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Soo-Jung</creatorcontrib><creatorcontrib>Jung, Pil-Hoon</creatorcontrib><creatorcontrib>Kim, Wonjoong</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Hong, Sung-Hoon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Soo-Jung</au><au>Jung, Pil-Hoon</au><au>Kim, Wonjoong</au><au>Lee, Heon</au><au>Hong, Sung-Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of highly integrated multiple vivid colours using a three-dimensional broadband perfect absorber</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-10-16</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>14859</spage><epage>9</epage><pages>14859-9</pages><artnum>14859</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The colour printing technology based on interactions between geometric structures and light has various advantages over the pigment-based colour technology in terms of nontoxicity and ultrasmall pixel size. The asymmetric Fabry–Perot (F–P) cavity absorber is the simplest light-interacting structure, which can easily represent and control the colour by the thickness of the dielectric layer. However, for practical applications, an advanced manufacturing technique for the simultaneous generation of multiple reflective colours is required. In this study, we demonstrate F–P cavity absorbers with micropixels by overcoming the difficulties of multi-level pattern fabrication using a nanoimprinting approach. Our asymmetric F–P cavity absorber exhibited a high absorption (approximately 99%) in a wide visible light range upon the incorporation of lossy metallic materials, yielding vivid colours. A high-resolution image of eight different reflective colours was obtained by a one-step process. This demonstrates the potential of this technology for device applications such as high-resolution colour displays and colour patterns used for security functions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31619698</pmid><doi>10.1038/s41598-019-49906-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-10, Vol.9 (1), p.14859-9, Article 14859
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6795891
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/166
639/301
639/624
639/925
Color
Design
Dielectric properties
Fabrication
Humanities and Social Sciences
multidisciplinary
Nanocrystals
Science
Science (multidisciplinary)
Simulation
title Generation of highly integrated multiple vivid colours using a three-dimensional broadband perfect absorber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20highly%20integrated%20multiple%20vivid%20colours%20using%20a%20three-dimensional%20broadband%20perfect%20absorber&rft.jtitle=Scientific%20reports&rft.au=Kim,%20Soo-Jung&rft.date=2019-10-16&rft.volume=9&rft.issue=1&rft.spage=14859&rft.epage=9&rft.pages=14859-9&rft.artnum=14859&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-49906-3&rft_dat=%3Cproquest_pubme%3E2306493320%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306201840&rft_id=info:pmid/31619698&rfr_iscdi=true