Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis

Objective To investigate the in vivo applicability of non-contrast-enhanced hydroxyapatite (HA)-specific bone mineral density (BMD) measurements based on dual-layer CT (DLCT). Methods A spine phantom containing three artificial vertebral bodies with known HA densities was measured to obtain spectral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2019-11, Vol.29 (11), p.6355-6363
Hauptverfasser: Roski, Ferdinand, Hammel, Johannes, Mei, Kai, Baum, Thomas, Kirschke, Jan S., Laugerette, Alexis, Kopp, Felix K., Bodden, Jannis, Pfeiffer, Daniela, Pfeiffer, Franz, Rummeny, Ernst J., Noël, Peter B., Gersing, Alexandra S., Schwaiger, Benedikt J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6363
container_issue 11
container_start_page 6355
container_title European radiology
container_volume 29
creator Roski, Ferdinand
Hammel, Johannes
Mei, Kai
Baum, Thomas
Kirschke, Jan S.
Laugerette, Alexis
Kopp, Felix K.
Bodden, Jannis
Pfeiffer, Daniela
Pfeiffer, Franz
Rummeny, Ernst J.
Noël, Peter B.
Gersing, Alexandra S.
Schwaiger, Benedikt J.
description Objective To investigate the in vivo applicability of non-contrast-enhanced hydroxyapatite (HA)-specific bone mineral density (BMD) measurements based on dual-layer CT (DLCT). Methods A spine phantom containing three artificial vertebral bodies with known HA densities was measured to obtain spectral data using DLCT and quantitative CT (QCT), simulating different patient positions and grades of obesity. BMD was calculated from virtual monoenergetic images at 50 and 200 keV. HA-specific BMD values of 174 vertebrae in 33 patients (66 ± 18 years; 33% women) were determined in non-contrast routine DLCT and compared with corresponding QCT-based BMD values. Results Examining the phantom, HA-specific BMD measurements were on a par with QCT measurements. In vivo measurements revealed strong correlations between DLCT and QCT ( r  = 0.987 [95% confidence interval, 0.963–1.000]; p  
doi_str_mv 10.1007/s00330-019-06263-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6795615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232090909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-62fe37eaf95242b6a2bc5e5a961509b5aeafabda41d004d1a5cc0e3484f4bfa53</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPhD7BAltiwMVy_kvEGiY54SZXYlLXlODeDq8QOdlJp-uvxMKU8FsgLSz7fPfdeH0Kec3jNAdo3BUBKYMANg0Y0kt0-IBuupGActuoh2YCRW9Yao87Ik1KuAcBw1T4mZ5JzrhshNmS9SBHpFCJmN9IeYwnLgU7oyppxwriU-pjDDfZ0yGmi_epGNroDZlpm9MuxandFMbpuRJrmOeVljaEswdPiM2IMcU-HlGkqC6YqpxLKU_JocGPBZ3f3Ofn64f3V7hO7_PLx8-7dJfOqVQtrxICyRTcYLZToGic6r1E703ANptOuSq7rneI9gOq5094DSrVVg-oGp-U5eXvyndduwt7XferAds5hcvlgkwv2byWGb3afbmzTGl2bVINXdwY5fV-xLHYKxeM4uohpLVYIKcAcT0Vf_oNepzXHul6lxFZxCQ1USpwoXz-iZBzuh-Fgj6naU6q2pmp_pmpva9GLP9e4L_kVYwXkCShVinvMv3v_x_YHqhSyMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2228413060</pqid></control><display><type>article</type><title>Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Roski, Ferdinand ; Hammel, Johannes ; Mei, Kai ; Baum, Thomas ; Kirschke, Jan S. ; Laugerette, Alexis ; Kopp, Felix K. ; Bodden, Jannis ; Pfeiffer, Daniela ; Pfeiffer, Franz ; Rummeny, Ernst J. ; Noël, Peter B. ; Gersing, Alexandra S. ; Schwaiger, Benedikt J.</creator><creatorcontrib>Roski, Ferdinand ; Hammel, Johannes ; Mei, Kai ; Baum, Thomas ; Kirschke, Jan S. ; Laugerette, Alexis ; Kopp, Felix K. ; Bodden, Jannis ; Pfeiffer, Daniela ; Pfeiffer, Franz ; Rummeny, Ernst J. ; Noël, Peter B. ; Gersing, Alexandra S. ; Schwaiger, Benedikt J.</creatorcontrib><description>Objective To investigate the in vivo applicability of non-contrast-enhanced hydroxyapatite (HA)-specific bone mineral density (BMD) measurements based on dual-layer CT (DLCT). Methods A spine phantom containing three artificial vertebral bodies with known HA densities was measured to obtain spectral data using DLCT and quantitative CT (QCT), simulating different patient positions and grades of obesity. BMD was calculated from virtual monoenergetic images at 50 and 200 keV. HA-specific BMD values of 174 vertebrae in 33 patients (66 ± 18 years; 33% women) were determined in non-contrast routine DLCT and compared with corresponding QCT-based BMD values. Results Examining the phantom, HA-specific BMD measurements were on a par with QCT measurements. In vivo measurements revealed strong correlations between DLCT and QCT ( r  = 0.987 [95% confidence interval, 0.963–1.000]; p  &lt; 0.001) and substantial agreement in a Bland–Altman plot. Conclusion DLCT-based HA-specific BMD measurements were comparable with QCT measurements in in vivo analyses. This suggests that opportunistic DLCT-based BMD measurements are an alternative to QCT, without requiring phantoms and specific protocols. Key Points • DLCT-based hydroxyapatite-specific BMD measurements show a substantial agreement with QCT-based BMD measurements in vivo. • DLCT-based hydroxyapatite-specific measurements are on a par with QCT in spine phantom measurements. • Opportunistic DLCT-based BMD measurements may be a feasible alternative for QCT, without requiring dedicated examination protocols or a phantom.</description><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-019-06263-z</identifier><identifier>PMID: 31115622</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorptiometry, Photon - methods ; Adult ; Algorithms ; Biocompatibility ; Biomedical materials ; Bone density ; Bone Density - physiology ; Bone mineral density ; Confidence intervals ; Correlation analysis ; Diagnostic Radiology ; Female ; Humans ; Hydroxyapatite ; Imaging ; In vivo methods and tests ; Internal Medicine ; Interventional Radiology ; Male ; Mass Screening - methods ; Medical screening ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Musculoskeletal ; Neuroradiology ; Osteoporosis ; Osteoporosis - diagnostic imaging ; Osteoporosis - physiopathology ; Phantoms, Imaging ; Radiology ; Spine ; Spine - diagnostic imaging ; Surgical implants ; Tomography, X-Ray Computed - methods ; Ultrasound ; Vertebrae</subject><ispartof>European radiology, 2019-11, Vol.29 (11), p.6355-6363</ispartof><rights>The Author(s) 2019</rights><rights>European Radiology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-62fe37eaf95242b6a2bc5e5a961509b5aeafabda41d004d1a5cc0e3484f4bfa53</citedby><cites>FETCH-LOGICAL-c474t-62fe37eaf95242b6a2bc5e5a961509b5aeafabda41d004d1a5cc0e3484f4bfa53</cites><orcidid>0000-0002-0938-2266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-019-06263-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-019-06263-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31115622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roski, Ferdinand</creatorcontrib><creatorcontrib>Hammel, Johannes</creatorcontrib><creatorcontrib>Mei, Kai</creatorcontrib><creatorcontrib>Baum, Thomas</creatorcontrib><creatorcontrib>Kirschke, Jan S.</creatorcontrib><creatorcontrib>Laugerette, Alexis</creatorcontrib><creatorcontrib>Kopp, Felix K.</creatorcontrib><creatorcontrib>Bodden, Jannis</creatorcontrib><creatorcontrib>Pfeiffer, Daniela</creatorcontrib><creatorcontrib>Pfeiffer, Franz</creatorcontrib><creatorcontrib>Rummeny, Ernst J.</creatorcontrib><creatorcontrib>Noël, Peter B.</creatorcontrib><creatorcontrib>Gersing, Alexandra S.</creatorcontrib><creatorcontrib>Schwaiger, Benedikt J.</creatorcontrib><title>Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objective To investigate the in vivo applicability of non-contrast-enhanced hydroxyapatite (HA)-specific bone mineral density (BMD) measurements based on dual-layer CT (DLCT). Methods A spine phantom containing three artificial vertebral bodies with known HA densities was measured to obtain spectral data using DLCT and quantitative CT (QCT), simulating different patient positions and grades of obesity. BMD was calculated from virtual monoenergetic images at 50 and 200 keV. HA-specific BMD values of 174 vertebrae in 33 patients (66 ± 18 years; 33% women) were determined in non-contrast routine DLCT and compared with corresponding QCT-based BMD values. Results Examining the phantom, HA-specific BMD measurements were on a par with QCT measurements. In vivo measurements revealed strong correlations between DLCT and QCT ( r  = 0.987 [95% confidence interval, 0.963–1.000]; p  &lt; 0.001) and substantial agreement in a Bland–Altman plot. Conclusion DLCT-based HA-specific BMD measurements were comparable with QCT measurements in in vivo analyses. This suggests that opportunistic DLCT-based BMD measurements are an alternative to QCT, without requiring phantoms and specific protocols. Key Points • DLCT-based hydroxyapatite-specific BMD measurements show a substantial agreement with QCT-based BMD measurements in vivo. • DLCT-based hydroxyapatite-specific measurements are on a par with QCT in spine phantom measurements. • Opportunistic DLCT-based BMD measurements may be a feasible alternative for QCT, without requiring dedicated examination protocols or a phantom.</description><subject>Absorptiometry, Photon - methods</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone density</subject><subject>Bone Density - physiology</subject><subject>Bone mineral density</subject><subject>Confidence intervals</subject><subject>Correlation analysis</subject><subject>Diagnostic Radiology</subject><subject>Female</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Imaging</subject><subject>In vivo methods and tests</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Male</subject><subject>Mass Screening - methods</subject><subject>Medical screening</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Musculoskeletal</subject><subject>Neuroradiology</subject><subject>Osteoporosis</subject><subject>Osteoporosis - diagnostic imaging</subject><subject>Osteoporosis - physiopathology</subject><subject>Phantoms, Imaging</subject><subject>Radiology</subject><subject>Spine</subject><subject>Spine - diagnostic imaging</subject><subject>Surgical implants</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Ultrasound</subject><subject>Vertebrae</subject><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtv1DAUhS0EokPhD7BAltiwMVy_kvEGiY54SZXYlLXlODeDq8QOdlJp-uvxMKU8FsgLSz7fPfdeH0Kec3jNAdo3BUBKYMANg0Y0kt0-IBuupGActuoh2YCRW9Yao87Ik1KuAcBw1T4mZ5JzrhshNmS9SBHpFCJmN9IeYwnLgU7oyppxwriU-pjDDfZ0yGmi_epGNroDZlpm9MuxandFMbpuRJrmOeVljaEswdPiM2IMcU-HlGkqC6YqpxLKU_JocGPBZ3f3Ofn64f3V7hO7_PLx8-7dJfOqVQtrxICyRTcYLZToGic6r1E703ANptOuSq7rneI9gOq5094DSrVVg-oGp-U5eXvyndduwt7XferAds5hcvlgkwv2byWGb3afbmzTGl2bVINXdwY5fV-xLHYKxeM4uohpLVYIKcAcT0Vf_oNepzXHul6lxFZxCQ1USpwoXz-iZBzuh-Fgj6naU6q2pmp_pmpva9GLP9e4L_kVYwXkCShVinvMv3v_x_YHqhSyMQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Roski, Ferdinand</creator><creator>Hammel, Johannes</creator><creator>Mei, Kai</creator><creator>Baum, Thomas</creator><creator>Kirschke, Jan S.</creator><creator>Laugerette, Alexis</creator><creator>Kopp, Felix K.</creator><creator>Bodden, Jannis</creator><creator>Pfeiffer, Daniela</creator><creator>Pfeiffer, Franz</creator><creator>Rummeny, Ernst J.</creator><creator>Noël, Peter B.</creator><creator>Gersing, Alexandra S.</creator><creator>Schwaiger, Benedikt J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0938-2266</orcidid></search><sort><creationdate>20191101</creationdate><title>Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis</title><author>Roski, Ferdinand ; Hammel, Johannes ; Mei, Kai ; Baum, Thomas ; Kirschke, Jan S. ; Laugerette, Alexis ; Kopp, Felix K. ; Bodden, Jannis ; Pfeiffer, Daniela ; Pfeiffer, Franz ; Rummeny, Ernst J. ; Noël, Peter B. ; Gersing, Alexandra S. ; Schwaiger, Benedikt J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-62fe37eaf95242b6a2bc5e5a961509b5aeafabda41d004d1a5cc0e3484f4bfa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorptiometry, Photon - methods</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone density</topic><topic>Bone Density - physiology</topic><topic>Bone mineral density</topic><topic>Confidence intervals</topic><topic>Correlation analysis</topic><topic>Diagnostic Radiology</topic><topic>Female</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Imaging</topic><topic>In vivo methods and tests</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Male</topic><topic>Mass Screening - methods</topic><topic>Medical screening</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Musculoskeletal</topic><topic>Neuroradiology</topic><topic>Osteoporosis</topic><topic>Osteoporosis - diagnostic imaging</topic><topic>Osteoporosis - physiopathology</topic><topic>Phantoms, Imaging</topic><topic>Radiology</topic><topic>Spine</topic><topic>Spine - diagnostic imaging</topic><topic>Surgical implants</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Ultrasound</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roski, Ferdinand</creatorcontrib><creatorcontrib>Hammel, Johannes</creatorcontrib><creatorcontrib>Mei, Kai</creatorcontrib><creatorcontrib>Baum, Thomas</creatorcontrib><creatorcontrib>Kirschke, Jan S.</creatorcontrib><creatorcontrib>Laugerette, Alexis</creatorcontrib><creatorcontrib>Kopp, Felix K.</creatorcontrib><creatorcontrib>Bodden, Jannis</creatorcontrib><creatorcontrib>Pfeiffer, Daniela</creatorcontrib><creatorcontrib>Pfeiffer, Franz</creatorcontrib><creatorcontrib>Rummeny, Ernst J.</creatorcontrib><creatorcontrib>Noël, Peter B.</creatorcontrib><creatorcontrib>Gersing, Alexandra S.</creatorcontrib><creatorcontrib>Schwaiger, Benedikt J.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roski, Ferdinand</au><au>Hammel, Johannes</au><au>Mei, Kai</au><au>Baum, Thomas</au><au>Kirschke, Jan S.</au><au>Laugerette, Alexis</au><au>Kopp, Felix K.</au><au>Bodden, Jannis</au><au>Pfeiffer, Daniela</au><au>Pfeiffer, Franz</au><au>Rummeny, Ernst J.</au><au>Noël, Peter B.</au><au>Gersing, Alexandra S.</au><au>Schwaiger, Benedikt J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>29</volume><issue>11</issue><spage>6355</spage><epage>6363</epage><pages>6355-6363</pages><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objective To investigate the in vivo applicability of non-contrast-enhanced hydroxyapatite (HA)-specific bone mineral density (BMD) measurements based on dual-layer CT (DLCT). Methods A spine phantom containing three artificial vertebral bodies with known HA densities was measured to obtain spectral data using DLCT and quantitative CT (QCT), simulating different patient positions and grades of obesity. BMD was calculated from virtual monoenergetic images at 50 and 200 keV. HA-specific BMD values of 174 vertebrae in 33 patients (66 ± 18 years; 33% women) were determined in non-contrast routine DLCT and compared with corresponding QCT-based BMD values. Results Examining the phantom, HA-specific BMD measurements were on a par with QCT measurements. In vivo measurements revealed strong correlations between DLCT and QCT ( r  = 0.987 [95% confidence interval, 0.963–1.000]; p  &lt; 0.001) and substantial agreement in a Bland–Altman plot. Conclusion DLCT-based HA-specific BMD measurements were comparable with QCT measurements in in vivo analyses. This suggests that opportunistic DLCT-based BMD measurements are an alternative to QCT, without requiring phantoms and specific protocols. Key Points • DLCT-based hydroxyapatite-specific BMD measurements show a substantial agreement with QCT-based BMD measurements in vivo. • DLCT-based hydroxyapatite-specific measurements are on a par with QCT in spine phantom measurements. • Opportunistic DLCT-based BMD measurements may be a feasible alternative for QCT, without requiring dedicated examination protocols or a phantom.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31115622</pmid><doi>10.1007/s00330-019-06263-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0938-2266</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0938-7994
ispartof European radiology, 2019-11, Vol.29 (11), p.6355-6363
issn 0938-7994
1432-1084
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6795615
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Absorptiometry, Photon - methods
Adult
Algorithms
Biocompatibility
Biomedical materials
Bone density
Bone Density - physiology
Bone mineral density
Confidence intervals
Correlation analysis
Diagnostic Radiology
Female
Humans
Hydroxyapatite
Imaging
In vivo methods and tests
Internal Medicine
Interventional Radiology
Male
Mass Screening - methods
Medical screening
Medicine
Medicine & Public Health
Middle Aged
Musculoskeletal
Neuroradiology
Osteoporosis
Osteoporosis - diagnostic imaging
Osteoporosis - physiopathology
Phantoms, Imaging
Radiology
Spine
Spine - diagnostic imaging
Surgical implants
Tomography, X-Ray Computed - methods
Ultrasound
Vertebrae
title Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20mineral%20density%20measurements%20derived%20from%20dual-layer%20spectral%20CT%20enable%20opportunistic%20screening%20for%20osteoporosis&rft.jtitle=European%20radiology&rft.au=Roski,%20Ferdinand&rft.date=2019-11-01&rft.volume=29&rft.issue=11&rft.spage=6355&rft.epage=6363&rft.pages=6355-6363&rft.issn=0938-7994&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-019-06263-z&rft_dat=%3Cproquest_pubme%3E2232090909%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2228413060&rft_id=info:pmid/31115622&rfr_iscdi=true