Glial Cell Line-Derived Neurotrophic Factor Requires Transforming Growth Factor-beta for Exerting Its Full Neurotrophic Potential on Peripheral and CNS Neurons
Numerous studies have suggested that glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic molecule. We show now on a variety of cultured neurons including peripheral autonomic, sensory, and CNS dopaminergic neurons that GDNF is not trophically active unless supplemented with T...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 1998-12, Vol.18 (23), p.9822-9834 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerous studies have suggested that glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic molecule. We show now on a variety of cultured neurons including peripheral autonomic, sensory, and CNS dopaminergic neurons that GDNF is not trophically active unless supplemented with TGF-beta. Immunoneutralization of endogenous TGF-beta provided by serum or TGF-beta-secreting cells, as e.g., neurons, in culture abolishes the neurotrophic effect of GDNF. The dose-response relationship required for the synergistic effect of GDNF and TGF-beta identifies 60 pg/ml of either factor combined with 2 ng/ml of the other factor as the EC50. GDNF/TGF-beta signaling employs activation of phosphatidylinositol-3 (PI-3) kinase as an intermediate step as shown by the effect of the specific PI-3 kinase inhibitor wortmannin. The synergistic action of GDNF and TGF-beta involves protection of glycosylphosphatidylinositol (GPI)-linked receptors as shown by the restoration of their trophic effects after phosphatidylinositol-specific phospholipase C-mediated hydrolysis of GPI-anchored GDNF family receptor alpha. The biological significance of the trophic synergism of GDNF and TGF-beta is underscored by colocalization of the receptors for TGF-beta and GDNF on all investigated GDNF-responsive neuron populations in vivo. Moreover, the in vivo relevance of the TGF-beta/GDNF synergism is highlighted by the co-storage of TGF-beta and GDNF in secretory vesicles of a model neuron, the chromaffin cell, and their activity-dependent release. Our results broaden the definition of a neurotrophic factor by incorporating the possibility that two factors that lack a neurotrophic activity when acting separately become neurotrophic when acting in concert. Moreover, our data may have a substantial impact on the treatment of neurodegenerative diseases. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.18-23-09822.1998 |