A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells
The problem of predicting the position of a freely foraging rat based on the ensemble firing patterns of place cells recorded from the CA1 region of its hippocampus is used to develop a two-stage statistical paradigm for neural spike train decoding. In the first, or encoding stage, place cell spikin...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 1998-09, Vol.18 (18), p.7411-7425 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7425 |
---|---|
container_issue | 18 |
container_start_page | 7411 |
container_title | The Journal of neuroscience |
container_volume | 18 |
creator | Brown, Emery N Frank, Loren M Tang, Dengda Quirk, Michael C Wilson, Matthew A |
description | The problem of predicting the position of a freely foraging rat based on the ensemble firing patterns of place cells recorded from the CA1 region of its hippocampus is used to develop a two-stage statistical paradigm for neural spike train decoding. In the first, or encoding stage, place cell spiking activity is modeled as an inhomogeneous Poisson process whose instantaneous rate is a function of the animal's position in space and phase of its theta rhythm. The animal's path is modeled as a Gaussian random walk. In the second, or decoding stage, a Bayesian statistical paradigm is used to derive a nonlinear recursive causal filter algorithm for predicting the position of the animal from the place cell ensemble firing patterns. The algebra of the decoding algorithm defines an explicit map of the discrete spike trains into the position prediction. The confidence regions for the position predictions quantify spike train information in terms of the most probable locations of the animal given the ensemble firing pattern. Under our inhomogeneous Poisson model position was a three to five times stronger modulator of the place cell spiking activity than theta phase in an open circular environment. For animal 1 (2) the median decoding error based on 34 (33) place cells recorded during 10 min of foraging was 8.0 (7.7) cm. Our statistical paradigm provides a reliable approach for quantifying the spatial information in the ensemble place cell firing patterns and defines a generally applicable framework for studying information encoding in neural systems. |
doi_str_mv | 10.1523/jneurosci.18-18-07411.1998 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6793233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73894771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-3c9164b32f4d5430c27e596b2a476315e3b7d4269069676607a0d1aae2c323e63</originalsourceid><addsrcrecordid>eNpVUd1q2zAUFmOjy7o9wkDsYrtyJlmyFO9iELJ07ShtaNprIcvHiTrbciVloa_RJ57chLLBAQl9fzp8CH2iZEqLnH2972HnXTB2SmdZGiI5pVNalrNXaJIYZZZzQl-jCcklyQSX_C16F8I9IUQSKk_QSSmZEIJO0NMcr6OONkRrdItX2uvabjrcOI-vUkp6Ww_2N-Bbr22Pf4Bxte03eD4MrYUaR4dXLthoXY9XHmprnq-Ndx1e9gG6qgV8Zv2oWekYwfcBuwbf6IjP7TA4o7thDG61AbyAtg3v0ZtGtwE-HM9TdHe2vF2cZ5fXPy8W88vMFFLEjJmSCl6xvOF1wRkxuYSiFFWuuRSMFsAqWfNclESUQgpBpCY11Rpyw3IGgp2i7wffYVd1UBvoY1pXDd522j8qp636H-ntVm3cHyVkmRxYMvh8NPDuYQchqs4Gk1bQPbhdUJLNSi4lTcRvB6JJrQUPzUsIJWpsVP26Wt7dXK8XF4rOxnluVI2NJvHHf7_5Ij1WmPAvB3xrN9u99aBCp9s2sana7_cHv9GO_QWbRq6y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73894771</pqid></control><display><type>article</type><title>A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Brown, Emery N ; Frank, Loren M ; Tang, Dengda ; Quirk, Michael C ; Wilson, Matthew A</creator><creatorcontrib>Brown, Emery N ; Frank, Loren M ; Tang, Dengda ; Quirk, Michael C ; Wilson, Matthew A</creatorcontrib><description>The problem of predicting the position of a freely foraging rat based on the ensemble firing patterns of place cells recorded from the CA1 region of its hippocampus is used to develop a two-stage statistical paradigm for neural spike train decoding. In the first, or encoding stage, place cell spiking activity is modeled as an inhomogeneous Poisson process whose instantaneous rate is a function of the animal's position in space and phase of its theta rhythm. The animal's path is modeled as a Gaussian random walk. In the second, or decoding stage, a Bayesian statistical paradigm is used to derive a nonlinear recursive causal filter algorithm for predicting the position of the animal from the place cell ensemble firing patterns. The algebra of the decoding algorithm defines an explicit map of the discrete spike trains into the position prediction. The confidence regions for the position predictions quantify spike train information in terms of the most probable locations of the animal given the ensemble firing pattern. Under our inhomogeneous Poisson model position was a three to five times stronger modulator of the place cell spiking activity than theta phase in an open circular environment. For animal 1 (2) the median decoding error based on 34 (33) place cells recorded during 10 min of foraging was 8.0 (7.7) cm. Our statistical paradigm provides a reliable approach for quantifying the spatial information in the ensemble place cell firing patterns and defines a generally applicable framework for studying information encoding in neural systems.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.18-18-07411.1998</identifier><identifier>PMID: 9736661</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials - physiology ; Algorithms ; Animals ; Bayes Theorem ; Behavior, Animal - physiology ; Hippocampus - cytology ; Hippocampus - physiology ; Locomotion - physiology ; Models, Neurological ; Neurons - physiology ; Nonlinear Dynamics ; Poisson Distribution ; Rats ; Rats, Inbred Strains ; Space life sciences ; Spatial Behavior - physiology</subject><ispartof>The Journal of neuroscience, 1998-09, Vol.18 (18), p.7411-7425</ispartof><rights>Copyright © 1998 Society for Neuroscience 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-3c9164b32f4d5430c27e596b2a476315e3b7d4269069676607a0d1aae2c323e63</citedby><cites>FETCH-LOGICAL-c576t-3c9164b32f4d5430c27e596b2a476315e3b7d4269069676607a0d1aae2c323e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793233/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793233/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9736661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Emery N</creatorcontrib><creatorcontrib>Frank, Loren M</creatorcontrib><creatorcontrib>Tang, Dengda</creatorcontrib><creatorcontrib>Quirk, Michael C</creatorcontrib><creatorcontrib>Wilson, Matthew A</creatorcontrib><title>A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The problem of predicting the position of a freely foraging rat based on the ensemble firing patterns of place cells recorded from the CA1 region of its hippocampus is used to develop a two-stage statistical paradigm for neural spike train decoding. In the first, or encoding stage, place cell spiking activity is modeled as an inhomogeneous Poisson process whose instantaneous rate is a function of the animal's position in space and phase of its theta rhythm. The animal's path is modeled as a Gaussian random walk. In the second, or decoding stage, a Bayesian statistical paradigm is used to derive a nonlinear recursive causal filter algorithm for predicting the position of the animal from the place cell ensemble firing patterns. The algebra of the decoding algorithm defines an explicit map of the discrete spike trains into the position prediction. The confidence regions for the position predictions quantify spike train information in terms of the most probable locations of the animal given the ensemble firing pattern. Under our inhomogeneous Poisson model position was a three to five times stronger modulator of the place cell spiking activity than theta phase in an open circular environment. For animal 1 (2) the median decoding error based on 34 (33) place cells recorded during 10 min of foraging was 8.0 (7.7) cm. Our statistical paradigm provides a reliable approach for quantifying the spatial information in the ensemble place cell firing patterns and defines a generally applicable framework for studying information encoding in neural systems.</description><subject>Action Potentials - physiology</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Behavior, Animal - physiology</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Locomotion - physiology</subject><subject>Models, Neurological</subject><subject>Neurons - physiology</subject><subject>Nonlinear Dynamics</subject><subject>Poisson Distribution</subject><subject>Rats</subject><subject>Rats, Inbred Strains</subject><subject>Space life sciences</subject><subject>Spatial Behavior - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUd1q2zAUFmOjy7o9wkDsYrtyJlmyFO9iELJ07ShtaNprIcvHiTrbciVloa_RJ57chLLBAQl9fzp8CH2iZEqLnH2972HnXTB2SmdZGiI5pVNalrNXaJIYZZZzQl-jCcklyQSX_C16F8I9IUQSKk_QSSmZEIJO0NMcr6OONkRrdItX2uvabjrcOI-vUkp6Ww_2N-Bbr22Pf4Bxte03eD4MrYUaR4dXLthoXY9XHmprnq-Ndx1e9gG6qgV8Zv2oWekYwfcBuwbf6IjP7TA4o7thDG61AbyAtg3v0ZtGtwE-HM9TdHe2vF2cZ5fXPy8W88vMFFLEjJmSCl6xvOF1wRkxuYSiFFWuuRSMFsAqWfNclESUQgpBpCY11Rpyw3IGgp2i7wffYVd1UBvoY1pXDd522j8qp636H-ntVm3cHyVkmRxYMvh8NPDuYQchqs4Gk1bQPbhdUJLNSi4lTcRvB6JJrQUPzUsIJWpsVP26Wt7dXK8XF4rOxnluVI2NJvHHf7_5Ij1WmPAvB3xrN9u99aBCp9s2sana7_cHv9GO_QWbRq6y</recordid><startdate>19980915</startdate><enddate>19980915</enddate><creator>Brown, Emery N</creator><creator>Frank, Loren M</creator><creator>Tang, Dengda</creator><creator>Quirk, Michael C</creator><creator>Wilson, Matthew A</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980915</creationdate><title>A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells</title><author>Brown, Emery N ; Frank, Loren M ; Tang, Dengda ; Quirk, Michael C ; Wilson, Matthew A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-3c9164b32f4d5430c27e596b2a476315e3b7d4269069676607a0d1aae2c323e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Action Potentials - physiology</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Behavior, Animal - physiology</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Locomotion - physiology</topic><topic>Models, Neurological</topic><topic>Neurons - physiology</topic><topic>Nonlinear Dynamics</topic><topic>Poisson Distribution</topic><topic>Rats</topic><topic>Rats, Inbred Strains</topic><topic>Space life sciences</topic><topic>Spatial Behavior - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Emery N</creatorcontrib><creatorcontrib>Frank, Loren M</creatorcontrib><creatorcontrib>Tang, Dengda</creatorcontrib><creatorcontrib>Quirk, Michael C</creatorcontrib><creatorcontrib>Wilson, Matthew A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Emery N</au><au>Frank, Loren M</au><au>Tang, Dengda</au><au>Quirk, Michael C</au><au>Wilson, Matthew A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>1998-09-15</date><risdate>1998</risdate><volume>18</volume><issue>18</issue><spage>7411</spage><epage>7425</epage><pages>7411-7425</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The problem of predicting the position of a freely foraging rat based on the ensemble firing patterns of place cells recorded from the CA1 region of its hippocampus is used to develop a two-stage statistical paradigm for neural spike train decoding. In the first, or encoding stage, place cell spiking activity is modeled as an inhomogeneous Poisson process whose instantaneous rate is a function of the animal's position in space and phase of its theta rhythm. The animal's path is modeled as a Gaussian random walk. In the second, or decoding stage, a Bayesian statistical paradigm is used to derive a nonlinear recursive causal filter algorithm for predicting the position of the animal from the place cell ensemble firing patterns. The algebra of the decoding algorithm defines an explicit map of the discrete spike trains into the position prediction. The confidence regions for the position predictions quantify spike train information in terms of the most probable locations of the animal given the ensemble firing pattern. Under our inhomogeneous Poisson model position was a three to five times stronger modulator of the place cell spiking activity than theta phase in an open circular environment. For animal 1 (2) the median decoding error based on 34 (33) place cells recorded during 10 min of foraging was 8.0 (7.7) cm. Our statistical paradigm provides a reliable approach for quantifying the spatial information in the ensemble place cell firing patterns and defines a generally applicable framework for studying information encoding in neural systems.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>9736661</pmid><doi>10.1523/jneurosci.18-18-07411.1998</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 1998-09, Vol.18 (18), p.7411-7425 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6793233 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Action Potentials - physiology Algorithms Animals Bayes Theorem Behavior, Animal - physiology Hippocampus - cytology Hippocampus - physiology Locomotion - physiology Models, Neurological Neurons - physiology Nonlinear Dynamics Poisson Distribution Rats Rats, Inbred Strains Space life sciences Spatial Behavior - physiology |
title | A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Statistical%20Paradigm%20for%20Neural%20Spike%20Train%20Decoding%20Applied%20to%20Position%20Prediction%20from%20Ensemble%20Firing%20Patterns%20of%20Rat%20Hippocampal%20Place%20Cells&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Brown,%20Emery%20N&rft.date=1998-09-15&rft.volume=18&rft.issue=18&rft.spage=7411&rft.epage=7425&rft.pages=7411-7425&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.18-18-07411.1998&rft_dat=%3Cproquest_pubme%3E73894771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73894771&rft_id=info:pmid/9736661&rfr_iscdi=true |