Voltage-gated potassium channels are critical for infrared inhibition of action potentials: an experimental study

Thermal block of unmyelinated axons may serve as a modality for control, suggesting a means for providing therapies for pain. Computational modeling predicted that potassium channels are necessary for mediating thermal block of propagating compound action potentials (CAPs) with infrared (IR) light....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurophotonics (Print) 2019-10, Vol.6 (4), p.040501-040501
Hauptverfasser: Ganguly, Mohit, Ford, Jeremy B, Zhuo, Junqi, McPheeters, Matthew T, Jenkins, Michael W, Chiel, Hillel J, Jansen, E. Duco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 040501
container_issue 4
container_start_page 040501
container_title Neurophotonics (Print)
container_volume 6
creator Ganguly, Mohit
Ford, Jeremy B
Zhuo, Junqi
McPheeters, Matthew T
Jenkins, Michael W
Chiel, Hillel J
Jansen, E. Duco
description Thermal block of unmyelinated axons may serve as a modality for control, suggesting a means for providing therapies for pain. Computational modeling predicted that potassium channels are necessary for mediating thermal block of propagating compound action potentials (CAPs) with infrared (IR) light. Our study tests that hypothesis. Results suggest that potassium channel blockers disrupt the ability of IR to block propagating CAPs in Aplysia californica nerves, whereas sodium channel blockers appear to have no significant effect. These observations validate the modeling results and suggest potential applications of thermal block to many other unmyelinated axons.
doi_str_mv 10.1117/1.NPh.6.4.040501
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6792434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862397410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-ad27a94d0f5a7272ae7a36a7a5f6c535f84f148f8d011b877c723436ee8a82453</originalsourceid><addsrcrecordid>eNqNUU1v1DAUtBCIVkvvnFAkLlwS_BU74YCEWpYiLdADoN6st469cZW1UzupKL8et1uWgkDi5CfPvJl5GoSeElwRQuRLUn086ytR8QpzXGPyAB1SRtuSU9483M_s_AAdpXSBMSaUtDVhj9EBI4LimvNDdPk1DBNsTLmByXTFGCZIyc3bQvfgvRlSAdEUOrrJaRgKG2LhvI35s8tD79YZCL4ItgB9O2UF4ycHQ3pVgC_Mt9FEt81feTtNc3f9BD2yGTVHd-8CfVm-_Xx8Wq4-vXt__GZVaoHFVEJHJbS8w7YGSSUFI4EJkFBboWtW24ZbwhvbdJiQdSOllpRxJoxpoKG8Zgv0eqc7zuut6XSOEGFQY04D8VoFcOp3xLtebcKVErKlPEst0Is7gRguZ5MmtXVJm2EAb8KcFGVY8FZg0mTq8z-oF2GOPp-naCMoayUnOLPwjqVjSCkauw9DsLqpVBGVK1VCcbWrNK88u3_EfuFngZnQ7whpdOaX643MVRhupZYx-On8wwp8d3ayVN_dmOHTey7_wRg7m63Kv1n9M_sP_k7Qcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862397410</pqid></control><display><type>article</type><title>Voltage-gated potassium channels are critical for infrared inhibition of action potentials: an experimental study</title><source>PubMed (Medline)</source><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>ProQuest Central</source><creator>Ganguly, Mohit ; Ford, Jeremy B ; Zhuo, Junqi ; McPheeters, Matthew T ; Jenkins, Michael W ; Chiel, Hillel J ; Jansen, E. Duco</creator><creatorcontrib>Ganguly, Mohit ; Ford, Jeremy B ; Zhuo, Junqi ; McPheeters, Matthew T ; Jenkins, Michael W ; Chiel, Hillel J ; Jansen, E. Duco</creatorcontrib><description>Thermal block of unmyelinated axons may serve as a modality for control, suggesting a means for providing therapies for pain. Computational modeling predicted that potassium channels are necessary for mediating thermal block of propagating compound action potentials (CAPs) with infrared (IR) light. Our study tests that hypothesis. Results suggest that potassium channel blockers disrupt the ability of IR to block propagating CAPs in Aplysia californica nerves, whereas sodium channel blockers appear to have no significant effect. These observations validate the modeling results and suggest potential applications of thermal block to many other unmyelinated axons.</description><identifier>ISSN: 2329-423X</identifier><identifier>EISSN: 2329-4248</identifier><identifier>DOI: 10.1117/1.NPh.6.4.040501</identifier><identifier>PMID: 31620544</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Axons ; Channel gating ; Electrodes ; Experiments ; Lasers ; Letter ; Nerves ; Neurophotonics Letters ; Potassium ; Potassium channels (voltage-gated)</subject><ispartof>Neurophotonics (Print), 2019-10, Vol.6 (4), p.040501-040501</ispartof><rights>The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.</rights><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-ad27a94d0f5a7272ae7a36a7a5f6c535f84f148f8d011b877c723436ee8a82453</citedby><cites>FETCH-LOGICAL-c606t-ad27a94d0f5a7272ae7a36a7a5f6c535f84f148f8d011b877c723436ee8a82453</cites><orcidid>0000-0002-8908-5383 ; 0000-0003-4260-768X ; 0000-0001-9617-3157 ; 0000-0001-5524-5505 ; 0000-0003-3654-3325 ; 0000-0002-1778-6180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862397410/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862397410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,21367,27901,27902,33721,33722,43781,53766,53768,74045</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31620544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganguly, Mohit</creatorcontrib><creatorcontrib>Ford, Jeremy B</creatorcontrib><creatorcontrib>Zhuo, Junqi</creatorcontrib><creatorcontrib>McPheeters, Matthew T</creatorcontrib><creatorcontrib>Jenkins, Michael W</creatorcontrib><creatorcontrib>Chiel, Hillel J</creatorcontrib><creatorcontrib>Jansen, E. Duco</creatorcontrib><title>Voltage-gated potassium channels are critical for infrared inhibition of action potentials: an experimental study</title><title>Neurophotonics (Print)</title><addtitle>Neurophoton</addtitle><description>Thermal block of unmyelinated axons may serve as a modality for control, suggesting a means for providing therapies for pain. Computational modeling predicted that potassium channels are necessary for mediating thermal block of propagating compound action potentials (CAPs) with infrared (IR) light. Our study tests that hypothesis. Results suggest that potassium channel blockers disrupt the ability of IR to block propagating CAPs in Aplysia californica nerves, whereas sodium channel blockers appear to have no significant effect. These observations validate the modeling results and suggest potential applications of thermal block to many other unmyelinated axons.</description><subject>Axons</subject><subject>Channel gating</subject><subject>Electrodes</subject><subject>Experiments</subject><subject>Lasers</subject><subject>Letter</subject><subject>Nerves</subject><subject>Neurophotonics Letters</subject><subject>Potassium</subject><subject>Potassium channels (voltage-gated)</subject><issn>2329-423X</issn><issn>2329-4248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNUU1v1DAUtBCIVkvvnFAkLlwS_BU74YCEWpYiLdADoN6st469cZW1UzupKL8et1uWgkDi5CfPvJl5GoSeElwRQuRLUn086ytR8QpzXGPyAB1SRtuSU9483M_s_AAdpXSBMSaUtDVhj9EBI4LimvNDdPk1DBNsTLmByXTFGCZIyc3bQvfgvRlSAdEUOrrJaRgKG2LhvI35s8tD79YZCL4ItgB9O2UF4ycHQ3pVgC_Mt9FEt81feTtNc3f9BD2yGTVHd-8CfVm-_Xx8Wq4-vXt__GZVaoHFVEJHJbS8w7YGSSUFI4EJkFBboWtW24ZbwhvbdJiQdSOllpRxJoxpoKG8Zgv0eqc7zuut6XSOEGFQY04D8VoFcOp3xLtebcKVErKlPEst0Is7gRguZ5MmtXVJm2EAb8KcFGVY8FZg0mTq8z-oF2GOPp-naCMoayUnOLPwjqVjSCkauw9DsLqpVBGVK1VCcbWrNK88u3_EfuFngZnQ7whpdOaX643MVRhupZYx-On8wwp8d3ayVN_dmOHTey7_wRg7m63Kv1n9M_sP_k7Qcw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Ganguly, Mohit</creator><creator>Ford, Jeremy B</creator><creator>Zhuo, Junqi</creator><creator>McPheeters, Matthew T</creator><creator>Jenkins, Michael W</creator><creator>Chiel, Hillel J</creator><creator>Jansen, E. Duco</creator><general>Society of Photo-Optical Instrumentation Engineers</general><general>S P I E - International Society for</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8908-5383</orcidid><orcidid>https://orcid.org/0000-0003-4260-768X</orcidid><orcidid>https://orcid.org/0000-0001-9617-3157</orcidid><orcidid>https://orcid.org/0000-0001-5524-5505</orcidid><orcidid>https://orcid.org/0000-0003-3654-3325</orcidid><orcidid>https://orcid.org/0000-0002-1778-6180</orcidid></search><sort><creationdate>20191001</creationdate><title>Voltage-gated potassium channels are critical for infrared inhibition of action potentials: an experimental study</title><author>Ganguly, Mohit ; Ford, Jeremy B ; Zhuo, Junqi ; McPheeters, Matthew T ; Jenkins, Michael W ; Chiel, Hillel J ; Jansen, E. Duco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-ad27a94d0f5a7272ae7a36a7a5f6c535f84f148f8d011b877c723436ee8a82453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axons</topic><topic>Channel gating</topic><topic>Electrodes</topic><topic>Experiments</topic><topic>Lasers</topic><topic>Letter</topic><topic>Nerves</topic><topic>Neurophotonics Letters</topic><topic>Potassium</topic><topic>Potassium channels (voltage-gated)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganguly, Mohit</creatorcontrib><creatorcontrib>Ford, Jeremy B</creatorcontrib><creatorcontrib>Zhuo, Junqi</creatorcontrib><creatorcontrib>McPheeters, Matthew T</creatorcontrib><creatorcontrib>Jenkins, Michael W</creatorcontrib><creatorcontrib>Chiel, Hillel J</creatorcontrib><creatorcontrib>Jansen, E. Duco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurophotonics (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganguly, Mohit</au><au>Ford, Jeremy B</au><au>Zhuo, Junqi</au><au>McPheeters, Matthew T</au><au>Jenkins, Michael W</au><au>Chiel, Hillel J</au><au>Jansen, E. Duco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage-gated potassium channels are critical for infrared inhibition of action potentials: an experimental study</atitle><jtitle>Neurophotonics (Print)</jtitle><addtitle>Neurophoton</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>6</volume><issue>4</issue><spage>040501</spage><epage>040501</epage><pages>040501-040501</pages><issn>2329-423X</issn><eissn>2329-4248</eissn><abstract>Thermal block of unmyelinated axons may serve as a modality for control, suggesting a means for providing therapies for pain. Computational modeling predicted that potassium channels are necessary for mediating thermal block of propagating compound action potentials (CAPs) with infrared (IR) light. Our study tests that hypothesis. Results suggest that potassium channel blockers disrupt the ability of IR to block propagating CAPs in Aplysia californica nerves, whereas sodium channel blockers appear to have no significant effect. These observations validate the modeling results and suggest potential applications of thermal block to many other unmyelinated axons.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>31620544</pmid><doi>10.1117/1.NPh.6.4.040501</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8908-5383</orcidid><orcidid>https://orcid.org/0000-0003-4260-768X</orcidid><orcidid>https://orcid.org/0000-0001-9617-3157</orcidid><orcidid>https://orcid.org/0000-0001-5524-5505</orcidid><orcidid>https://orcid.org/0000-0003-3654-3325</orcidid><orcidid>https://orcid.org/0000-0002-1778-6180</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-423X
ispartof Neurophotonics (Print), 2019-10, Vol.6 (4), p.040501-040501
issn 2329-423X
2329-4248
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6792434
source PubMed (Medline); DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); ProQuest Central
subjects Axons
Channel gating
Electrodes
Experiments
Lasers
Letter
Nerves
Neurophotonics Letters
Potassium
Potassium channels (voltage-gated)
title Voltage-gated potassium channels are critical for infrared inhibition of action potentials: an experimental study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage-gated%20potassium%20channels%20are%20critical%20for%20infrared%20inhibition%20of%20action%20potentials:%20an%20experimental%20study&rft.jtitle=Neurophotonics%20(Print)&rft.au=Ganguly,%20Mohit&rft.date=2019-10-01&rft.volume=6&rft.issue=4&rft.spage=040501&rft.epage=040501&rft.pages=040501-040501&rft.issn=2329-423X&rft.eissn=2329-4248&rft_id=info:doi/10.1117/1.NPh.6.4.040501&rft_dat=%3Cproquest_pubme%3E2862397410%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862397410&rft_id=info:pmid/31620544&rfr_iscdi=true