Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction–modification systems

A major barrier to both metabolic engineering and fundamental biological studies is the lack of genetic tools in most microorganisms. One example is Clostridium thermocellum ATCC 27405 T , where genetic tools are not available to help validate decades of hypotheses. A significant barrier to DNA tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial microbiology & biotechnology 2019-10, Vol.46 (9-10), p.1435-1443
Hauptverfasser: Riley, Lauren A., Ji, Lexiang, Schmitz, Robert J., Westpheling, Janet, Guss, Adam M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1443
container_issue 9-10
container_start_page 1435
container_title Journal of industrial microbiology & biotechnology
container_volume 46
creator Riley, Lauren A.
Ji, Lexiang
Schmitz, Robert J.
Westpheling, Janet
Guss, Adam M.
description A major barrier to both metabolic engineering and fundamental biological studies is the lack of genetic tools in most microorganisms. One example is Clostridium thermocellum ATCC 27405 T , where genetic tools are not available to help validate decades of hypotheses. A significant barrier to DNA transformation is restriction–modification systems, which defend against foreign DNA methylated differently than the host. To determine the active restriction–modification systems in this strain, we performed complete methylome analysis via single-molecule, real-time sequencing to detect 6-methyladenine and 4-methylcytosine and the rarely used whole-genome bisulfite sequencing to detect 5-methylcytosine. Multiple active systems were identified, and corresponding DNA methyltransferases were expressed from the Escherichia coli chromosome to mimic the C. thermocellum methylome. Plasmid methylation was experimentally validated and successfully electroporated into C. thermocellum ATCC 27405. This combined approach enabled genetic modification of the C. thermocellum -type strain and acts as a blueprint for transformation of other non-model microorganisms.
doi_str_mv 10.1007/s10295-019-02218-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6791906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305805339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-e4925dc6637c8fde141af49ede0f14fa20ff45f27ce4052db4bc890f79b6f6f63</originalsourceid><addsrcrecordid>eNp9Ustu1TAUjBCIlsIPsEAW3bAJ-BknG6Qq4iVVQkJlbfk6x72u4vhiO1e9O_6Bf-DD-BKcppTHAnlhW2fOzDmjqaqnBL8kGMtXiWDaiRqTrsaUkra-vlcdEy6bWggm7pc3a2QtOBNH1aOUrjDGQkr6sDpihHFKKT-uvn_S2YVJj2iAPYxh52HKKFiUo56SDdHf1JGbUD-GlKMb3OxR3kL0wcA4ls_ZRd8jKjkWaO80MsHvRsiAPOTtYQwekC4Ch-RSeQwI9jotlEVkKuR7QBEWYrMI_fj6zYfBWWdW3XRIGXx6XD2wekzw5PY-qT6_fXPRv6_PP7770J-d10awNtfAOyoG0zRMmtYOQDjRlncwALaEW02xtVxYKg2Uaemw4RvTdtjKbtPYcthJ9Xrl3c0bD4MpZkQ9ql10XseDCtqpvyuT26rLsFeN7EiHF4LnK0HxyqlkXAazNWGawGRFhJCCkAJ6casSw5e5LK-8S4uZeoIwJ0UZFi0WjHUFevoP9CrMsdhZULRhuFB2sqDoijIxpBTB3k1MsFqyotasqJIVdZMVdV2anv25613Lr3AUAFsBqZSmS4i_tf9D-xPkL9Cb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263015597</pqid></control><display><type>article</type><title>Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction–modification systems</title><source>MEDLINE</source><source>SpringerNature Complete Journals</source><source>Oxford Journals Open Access Collection</source><creator>Riley, Lauren A. ; Ji, Lexiang ; Schmitz, Robert J. ; Westpheling, Janet ; Guss, Adam M.</creator><creatorcontrib>Riley, Lauren A. ; Ji, Lexiang ; Schmitz, Robert J. ; Westpheling, Janet ; Guss, Adam M. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>A major barrier to both metabolic engineering and fundamental biological studies is the lack of genetic tools in most microorganisms. One example is Clostridium thermocellum ATCC 27405 T , where genetic tools are not available to help validate decades of hypotheses. A significant barrier to DNA transformation is restriction–modification systems, which defend against foreign DNA methylated differently than the host. To determine the active restriction–modification systems in this strain, we performed complete methylome analysis via single-molecule, real-time sequencing to detect 6-methyladenine and 4-methylcytosine and the rarely used whole-genome bisulfite sequencing to detect 5-methylcytosine. Multiple active systems were identified, and corresponding DNA methyltransferases were expressed from the Escherichia coli chromosome to mimic the C. thermocellum methylome. Plasmid methylation was experimentally validated and successfully electroporated into C. thermocellum ATCC 27405. This combined approach enabled genetic modification of the C. thermocellum -type strain and acts as a blueprint for transformation of other non-model microorganisms.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-019-02218-x</identifier><identifier>PMID: 31342224</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Bacteria ; BASIC BIOLOGICAL SCIENCES ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Biotechnology ; Bisulfite ; Chromosomes ; Clostridium thermocellum ; Clostridium thermocellum - genetics ; Clostridium thermocellum - metabolism ; Deoxyribonucleic acid ; DNA ; DNA Methylation ; DNA Restriction-Modification Enzymes - genetics ; DNA Restriction-Modification Enzymes - metabolism ; DNA sequencing ; E coli ; Epigenome ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genetic Engineering ; Genetic modification ; Genetic transformation ; Genetics and Molecular Biology of Industrial Organisms - Original Paper ; Genomes ; Inorganic Chemistry ; Life Sciences ; Metabolic Engineering ; Methylome ; Microbiology ; Microorganisms ; Plasmids - genetics ; Real-time sequencing ; Restriction–modification systems ; Single molecule ; Whole-genome bisulfite sequencing</subject><ispartof>Journal of industrial microbiology &amp; biotechnology, 2019-10, Vol.46 (9-10), p.1435-1443</ispartof><rights>The Author(s) 2019</rights><rights>Journal of Industrial Microbiology &amp; Biotechnology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-e4925dc6637c8fde141af49ede0f14fa20ff45f27ce4052db4bc890f79b6f6f63</citedby><cites>FETCH-LOGICAL-c538t-e4925dc6637c8fde141af49ede0f14fa20ff45f27ce4052db4bc890f79b6f6f63</cites><orcidid>0000-0001-5823-5329 ; 0000000158235329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-019-02218-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-019-02218-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31342224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557511$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Riley, Lauren A.</creatorcontrib><creatorcontrib>Ji, Lexiang</creatorcontrib><creatorcontrib>Schmitz, Robert J.</creatorcontrib><creatorcontrib>Westpheling, Janet</creatorcontrib><creatorcontrib>Guss, Adam M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction–modification systems</title><title>Journal of industrial microbiology &amp; biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>A major barrier to both metabolic engineering and fundamental biological studies is the lack of genetic tools in most microorganisms. One example is Clostridium thermocellum ATCC 27405 T , where genetic tools are not available to help validate decades of hypotheses. A significant barrier to DNA transformation is restriction–modification systems, which defend against foreign DNA methylated differently than the host. To determine the active restriction–modification systems in this strain, we performed complete methylome analysis via single-molecule, real-time sequencing to detect 6-methyladenine and 4-methylcytosine and the rarely used whole-genome bisulfite sequencing to detect 5-methylcytosine. Multiple active systems were identified, and corresponding DNA methyltransferases were expressed from the Escherichia coli chromosome to mimic the C. thermocellum methylome. Plasmid methylation was experimentally validated and successfully electroporated into C. thermocellum ATCC 27405. This combined approach enabled genetic modification of the C. thermocellum -type strain and acts as a blueprint for transformation of other non-model microorganisms.</description><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Bisulfite</subject><subject>Chromosomes</subject><subject>Clostridium thermocellum</subject><subject>Clostridium thermocellum - genetics</subject><subject>Clostridium thermocellum - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>DNA Restriction-Modification Enzymes - genetics</subject><subject>DNA Restriction-Modification Enzymes - metabolism</subject><subject>DNA sequencing</subject><subject>E coli</subject><subject>Epigenome</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genetic Engineering</subject><subject>Genetic modification</subject><subject>Genetic transformation</subject><subject>Genetics and Molecular Biology of Industrial Organisms - Original Paper</subject><subject>Genomes</subject><subject>Inorganic Chemistry</subject><subject>Life Sciences</subject><subject>Metabolic Engineering</subject><subject>Methylome</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Plasmids - genetics</subject><subject>Real-time sequencing</subject><subject>Restriction–modification systems</subject><subject>Single molecule</subject><subject>Whole-genome bisulfite sequencing</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9Ustu1TAUjBCIlsIPsEAW3bAJ-BknG6Qq4iVVQkJlbfk6x72u4vhiO1e9O_6Bf-DD-BKcppTHAnlhW2fOzDmjqaqnBL8kGMtXiWDaiRqTrsaUkra-vlcdEy6bWggm7pc3a2QtOBNH1aOUrjDGQkr6sDpihHFKKT-uvn_S2YVJj2iAPYxh52HKKFiUo56SDdHf1JGbUD-GlKMb3OxR3kL0wcA4ls_ZRd8jKjkWaO80MsHvRsiAPOTtYQwekC4Ch-RSeQwI9jotlEVkKuR7QBEWYrMI_fj6zYfBWWdW3XRIGXx6XD2wekzw5PY-qT6_fXPRv6_PP7770J-d10awNtfAOyoG0zRMmtYOQDjRlncwALaEW02xtVxYKg2Uaemw4RvTdtjKbtPYcthJ9Xrl3c0bD4MpZkQ9ql10XseDCtqpvyuT26rLsFeN7EiHF4LnK0HxyqlkXAazNWGawGRFhJCCkAJ6casSw5e5LK-8S4uZeoIwJ0UZFi0WjHUFevoP9CrMsdhZULRhuFB2sqDoijIxpBTB3k1MsFqyotasqJIVdZMVdV2anv25613Lr3AUAFsBqZSmS4i_tf9D-xPkL9Cb</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Riley, Lauren A.</creator><creator>Ji, Lexiang</creator><creator>Schmitz, Robert J.</creator><creator>Westpheling, Janet</creator><creator>Guss, Adam M.</creator><general>Springer International Publishing</general><general>Oxford University Press</general><general>Springer</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5823-5329</orcidid><orcidid>https://orcid.org/0000000158235329</orcidid></search><sort><creationdate>20191001</creationdate><title>Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction–modification systems</title><author>Riley, Lauren A. ; Ji, Lexiang ; Schmitz, Robert J. ; Westpheling, Janet ; Guss, Adam M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-e4925dc6637c8fde141af49ede0f14fa20ff45f27ce4052db4bc890f79b6f6f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Bisulfite</topic><topic>Chromosomes</topic><topic>Clostridium thermocellum</topic><topic>Clostridium thermocellum - genetics</topic><topic>Clostridium thermocellum - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>DNA Restriction-Modification Enzymes - genetics</topic><topic>DNA Restriction-Modification Enzymes - metabolism</topic><topic>DNA sequencing</topic><topic>E coli</topic><topic>Epigenome</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genetic Engineering</topic><topic>Genetic modification</topic><topic>Genetic transformation</topic><topic>Genetics and Molecular Biology of Industrial Organisms - Original Paper</topic><topic>Genomes</topic><topic>Inorganic Chemistry</topic><topic>Life Sciences</topic><topic>Metabolic Engineering</topic><topic>Methylome</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Plasmids - genetics</topic><topic>Real-time sequencing</topic><topic>Restriction–modification systems</topic><topic>Single molecule</topic><topic>Whole-genome bisulfite sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riley, Lauren A.</creatorcontrib><creatorcontrib>Ji, Lexiang</creatorcontrib><creatorcontrib>Schmitz, Robert J.</creatorcontrib><creatorcontrib>Westpheling, Janet</creatorcontrib><creatorcontrib>Guss, Adam M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riley, Lauren A.</au><au>Ji, Lexiang</au><au>Schmitz, Robert J.</au><au>Westpheling, Janet</au><au>Guss, Adam M.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction–modification systems</atitle><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>46</volume><issue>9-10</issue><spage>1435</spage><epage>1443</epage><pages>1435-1443</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>A major barrier to both metabolic engineering and fundamental biological studies is the lack of genetic tools in most microorganisms. One example is Clostridium thermocellum ATCC 27405 T , where genetic tools are not available to help validate decades of hypotheses. A significant barrier to DNA transformation is restriction–modification systems, which defend against foreign DNA methylated differently than the host. To determine the active restriction–modification systems in this strain, we performed complete methylome analysis via single-molecule, real-time sequencing to detect 6-methyladenine and 4-methylcytosine and the rarely used whole-genome bisulfite sequencing to detect 5-methylcytosine. Multiple active systems were identified, and corresponding DNA methyltransferases were expressed from the Escherichia coli chromosome to mimic the C. thermocellum methylome. Plasmid methylation was experimentally validated and successfully electroporated into C. thermocellum ATCC 27405. This combined approach enabled genetic modification of the C. thermocellum -type strain and acts as a blueprint for transformation of other non-model microorganisms.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31342224</pmid><doi>10.1007/s10295-019-02218-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5823-5329</orcidid><orcidid>https://orcid.org/0000000158235329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-5435
ispartof Journal of industrial microbiology & biotechnology, 2019-10, Vol.46 (9-10), p.1435-1443
issn 1367-5435
1476-5535
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6791906
source MEDLINE; SpringerNature Complete Journals; Oxford Journals Open Access Collection
subjects Bacteria
BASIC BIOLOGICAL SCIENCES
Biochemistry
Bioinformatics
Biomedical and Life Sciences
Biotechnology
Bisulfite
Chromosomes
Clostridium thermocellum
Clostridium thermocellum - genetics
Clostridium thermocellum - metabolism
Deoxyribonucleic acid
DNA
DNA Methylation
DNA Restriction-Modification Enzymes - genetics
DNA Restriction-Modification Enzymes - metabolism
DNA sequencing
E coli
Epigenome
Escherichia coli - genetics
Escherichia coli - metabolism
Genetic Engineering
Genetic modification
Genetic transformation
Genetics and Molecular Biology of Industrial Organisms - Original Paper
Genomes
Inorganic Chemistry
Life Sciences
Metabolic Engineering
Methylome
Microbiology
Microorganisms
Plasmids - genetics
Real-time sequencing
Restriction–modification systems
Single molecule
Whole-genome bisulfite sequencing
title Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction–modification systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20development%20of%20transformation%20in%20Clostridium%20thermocellum%20ATCC%2027405%20via%20complete%20methylome%20analysis%20and%20evasion%20of%20native%20restriction%E2%80%93modification%20systems&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Riley,%20Lauren%20A.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-10-01&rft.volume=46&rft.issue=9-10&rft.spage=1435&rft.epage=1443&rft.pages=1435-1443&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-019-02218-x&rft_dat=%3Cproquest_pubme%3E2305805339%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263015597&rft_id=info:pmid/31342224&rfr_iscdi=true