Knee Abduction and Internal Rotation Moments Increase ACL Force During Landing Through the Posterior Slope of the Tibia
ABSTRACT The mechanism underlying non‐contact anterior cruciate ligament (ACL) injury is multi‐factorial and still an object of debate. Computational models, in combination with in vivo and cadaveric studies, can provide valuable insight into the contribution of the different factors involved. The g...
Gespeichert in:
Veröffentlicht in: | Journal of orthopaedic research 2019-08, Vol.37 (8), p.1730-1742 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1742 |
---|---|
container_issue | 8 |
container_start_page | 1730 |
container_title | Journal of orthopaedic research |
container_volume | 37 |
creator | Navacchia, Alessandro Bates, Nathaniel A Schilaty, Nathan D Krych, Aaron J Hewett, Timothy E |
description | ABSTRACT
The mechanism underlying non‐contact anterior cruciate ligament (ACL) injury is multi‐factorial and still an object of debate. Computational models, in combination with in vivo and cadaveric studies, can provide valuable insight into the contribution of the different factors involved. The goal of this study was to validate four knee finite element models (two males and two females) to kinematic and strain data collected in vitro with an impact‐driven simulator and use them to assess how secondary external knee loads (knee abduction moment [KAM], anterior shear force, and internal rotation torque [ITR]) affect tibiofemoral contact forces and ACL force during impact. Four subject‐specific knee models were developed from specimen computed tomography and magnetic resonance imaging. Patellofemoral and tibiofemoral ligament properties were calibrated to match experimentally measured kinematics and ligament strain. Average root mean square errors and correlations between experimental and model‐predicted knee kinematics were below 1.5 mm and 2°, and above 0.75, respectively. Similar errors and correlations were obtained for ACL strain ( 0.9). Model‐predicted ACL forces were highly correlated with the anterior component of the tibiofemoral contact force on the lateral plateau occurring during impact (r = 0.99), which was increased by larger KAM and ITR through the posterior tibial slope and a larger contact force on the lateral side. This study provides a better understanding of the mechanism through which secondary external knee loads increase ACL injury risk during landing. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1730–1742, 2019 |
doi_str_mv | 10.1002/jor.24313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6790148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209597144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4153-63465cf7b6a1681706231cd317ad7691e8f50988da8008fa389c5fbcb68b40c43</originalsourceid><addsrcrecordid>eNp1kU1PGzEQhi3UCgL00D9Q-dgeFsbr9cdeKqG0tLSpQDRIvVlerzcx2tipvQvi39dJAMGhp5FmnnnG1ovQewInBKA8vQ3xpKwooXtoQhirClaKP2_QBATlBZScH6DDlG4BQJBS7qMDCrUQjMkJuv_prcVnTTuawQWPtW_xhR9s9LrH12HQ2-6vsLJ-SHliotUpL0xn-DxEY_GXMTq_wLO8uKnzZQzjYomHpcVXIWWRCxH_7sPa4tBt23PXOH2M3na6T_bdYz1CN-df59Pvxezy28X0bFaYijBacFpxZjrRcE24JAJ4SYlpKRG6FbwmVnYMailbLQFkp6msDesa03DZVGAqeoQ-77zrsVnZ1uRvRN2rdXQrHR9U0E69nni3VItwp7iogVQyCz4-CmL4O9o0qJVLxva99jaMSZUl1KwWpNrc-rRDTQwpRds9nyGgNkGpHJTaBpXZDy_f9Uw-JZOB0x1w73r78H-T-nF5vVP-A_EqngA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209597144</pqid></control><display><type>article</type><title>Knee Abduction and Internal Rotation Moments Increase ACL Force During Landing Through the Posterior Slope of the Tibia</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Navacchia, Alessandro ; Bates, Nathaniel A ; Schilaty, Nathan D ; Krych, Aaron J ; Hewett, Timothy E</creator><creatorcontrib>Navacchia, Alessandro ; Bates, Nathaniel A ; Schilaty, Nathan D ; Krych, Aaron J ; Hewett, Timothy E</creatorcontrib><description>ABSTRACT
The mechanism underlying non‐contact anterior cruciate ligament (ACL) injury is multi‐factorial and still an object of debate. Computational models, in combination with in vivo and cadaveric studies, can provide valuable insight into the contribution of the different factors involved. The goal of this study was to validate four knee finite element models (two males and two females) to kinematic and strain data collected in vitro with an impact‐driven simulator and use them to assess how secondary external knee loads (knee abduction moment [KAM], anterior shear force, and internal rotation torque [ITR]) affect tibiofemoral contact forces and ACL force during impact. Four subject‐specific knee models were developed from specimen computed tomography and magnetic resonance imaging. Patellofemoral and tibiofemoral ligament properties were calibrated to match experimentally measured kinematics and ligament strain. Average root mean square errors and correlations between experimental and model‐predicted knee kinematics were below 1.5 mm and 2°, and above 0.75, respectively. Similar errors and correlations were obtained for ACL strain (< 2% and > 0.9). Model‐predicted ACL forces were highly correlated with the anterior component of the tibiofemoral contact force on the lateral plateau occurring during impact (r = 0.99), which was increased by larger KAM and ITR through the posterior tibial slope and a larger contact force on the lateral side. This study provides a better understanding of the mechanism through which secondary external knee loads increase ACL injury risk during landing. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1730–1742, 2019</description><identifier>ISSN: 0736-0266</identifier><identifier>EISSN: 1554-527X</identifier><identifier>DOI: 10.1002/jor.24313</identifier><identifier>PMID: 30977558</identifier><language>eng</language><publisher>United States</publisher><subject>ACL ; Adult ; Anterior Cruciate Ligament - physiology ; Anterior Cruciate Ligament Injuries - etiology ; Biomechanical Phenomena ; Female ; finite element ; Finite Element Analysis ; Humans ; knee ; Knee Joint - physiology ; landing ; Male ; Middle Aged ; Tibia - physiology ; Weight-Bearing</subject><ispartof>Journal of orthopaedic research, 2019-08, Vol.37 (8), p.1730-1742</ispartof><rights>2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4153-63465cf7b6a1681706231cd317ad7691e8f50988da8008fa389c5fbcb68b40c43</citedby><cites>FETCH-LOGICAL-c4153-63465cf7b6a1681706231cd317ad7691e8f50988da8008fa389c5fbcb68b40c43</cites><orcidid>0000-0002-0375-8779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjor.24313$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjor.24313$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30977558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Navacchia, Alessandro</creatorcontrib><creatorcontrib>Bates, Nathaniel A</creatorcontrib><creatorcontrib>Schilaty, Nathan D</creatorcontrib><creatorcontrib>Krych, Aaron J</creatorcontrib><creatorcontrib>Hewett, Timothy E</creatorcontrib><title>Knee Abduction and Internal Rotation Moments Increase ACL Force During Landing Through the Posterior Slope of the Tibia</title><title>Journal of orthopaedic research</title><addtitle>J Orthop Res</addtitle><description>ABSTRACT
The mechanism underlying non‐contact anterior cruciate ligament (ACL) injury is multi‐factorial and still an object of debate. Computational models, in combination with in vivo and cadaveric studies, can provide valuable insight into the contribution of the different factors involved. The goal of this study was to validate four knee finite element models (two males and two females) to kinematic and strain data collected in vitro with an impact‐driven simulator and use them to assess how secondary external knee loads (knee abduction moment [KAM], anterior shear force, and internal rotation torque [ITR]) affect tibiofemoral contact forces and ACL force during impact. Four subject‐specific knee models were developed from specimen computed tomography and magnetic resonance imaging. Patellofemoral and tibiofemoral ligament properties were calibrated to match experimentally measured kinematics and ligament strain. Average root mean square errors and correlations between experimental and model‐predicted knee kinematics were below 1.5 mm and 2°, and above 0.75, respectively. Similar errors and correlations were obtained for ACL strain (< 2% and > 0.9). Model‐predicted ACL forces were highly correlated with the anterior component of the tibiofemoral contact force on the lateral plateau occurring during impact (r = 0.99), which was increased by larger KAM and ITR through the posterior tibial slope and a larger contact force on the lateral side. This study provides a better understanding of the mechanism through which secondary external knee loads increase ACL injury risk during landing. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1730–1742, 2019</description><subject>ACL</subject><subject>Adult</subject><subject>Anterior Cruciate Ligament - physiology</subject><subject>Anterior Cruciate Ligament Injuries - etiology</subject><subject>Biomechanical Phenomena</subject><subject>Female</subject><subject>finite element</subject><subject>Finite Element Analysis</subject><subject>Humans</subject><subject>knee</subject><subject>Knee Joint - physiology</subject><subject>landing</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Tibia - physiology</subject><subject>Weight-Bearing</subject><issn>0736-0266</issn><issn>1554-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1PGzEQhi3UCgL00D9Q-dgeFsbr9cdeKqG0tLSpQDRIvVlerzcx2tipvQvi39dJAMGhp5FmnnnG1ovQewInBKA8vQ3xpKwooXtoQhirClaKP2_QBATlBZScH6DDlG4BQJBS7qMDCrUQjMkJuv_prcVnTTuawQWPtW_xhR9s9LrH12HQ2-6vsLJ-SHliotUpL0xn-DxEY_GXMTq_wLO8uKnzZQzjYomHpcVXIWWRCxH_7sPa4tBt23PXOH2M3na6T_bdYz1CN-df59Pvxezy28X0bFaYijBacFpxZjrRcE24JAJ4SYlpKRG6FbwmVnYMailbLQFkp6msDesa03DZVGAqeoQ-77zrsVnZ1uRvRN2rdXQrHR9U0E69nni3VItwp7iogVQyCz4-CmL4O9o0qJVLxva99jaMSZUl1KwWpNrc-rRDTQwpRds9nyGgNkGpHJTaBpXZDy_f9Uw-JZOB0x1w73r78H-T-nF5vVP-A_EqngA</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Navacchia, Alessandro</creator><creator>Bates, Nathaniel A</creator><creator>Schilaty, Nathan D</creator><creator>Krych, Aaron J</creator><creator>Hewett, Timothy E</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0375-8779</orcidid></search><sort><creationdate>201908</creationdate><title>Knee Abduction and Internal Rotation Moments Increase ACL Force During Landing Through the Posterior Slope of the Tibia</title><author>Navacchia, Alessandro ; Bates, Nathaniel A ; Schilaty, Nathan D ; Krych, Aaron J ; Hewett, Timothy E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4153-63465cf7b6a1681706231cd317ad7691e8f50988da8008fa389c5fbcb68b40c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ACL</topic><topic>Adult</topic><topic>Anterior Cruciate Ligament - physiology</topic><topic>Anterior Cruciate Ligament Injuries - etiology</topic><topic>Biomechanical Phenomena</topic><topic>Female</topic><topic>finite element</topic><topic>Finite Element Analysis</topic><topic>Humans</topic><topic>knee</topic><topic>Knee Joint - physiology</topic><topic>landing</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Tibia - physiology</topic><topic>Weight-Bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navacchia, Alessandro</creatorcontrib><creatorcontrib>Bates, Nathaniel A</creatorcontrib><creatorcontrib>Schilaty, Nathan D</creatorcontrib><creatorcontrib>Krych, Aaron J</creatorcontrib><creatorcontrib>Hewett, Timothy E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of orthopaedic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navacchia, Alessandro</au><au>Bates, Nathaniel A</au><au>Schilaty, Nathan D</au><au>Krych, Aaron J</au><au>Hewett, Timothy E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knee Abduction and Internal Rotation Moments Increase ACL Force During Landing Through the Posterior Slope of the Tibia</atitle><jtitle>Journal of orthopaedic research</jtitle><addtitle>J Orthop Res</addtitle><date>2019-08</date><risdate>2019</risdate><volume>37</volume><issue>8</issue><spage>1730</spage><epage>1742</epage><pages>1730-1742</pages><issn>0736-0266</issn><eissn>1554-527X</eissn><abstract>ABSTRACT
The mechanism underlying non‐contact anterior cruciate ligament (ACL) injury is multi‐factorial and still an object of debate. Computational models, in combination with in vivo and cadaveric studies, can provide valuable insight into the contribution of the different factors involved. The goal of this study was to validate four knee finite element models (two males and two females) to kinematic and strain data collected in vitro with an impact‐driven simulator and use them to assess how secondary external knee loads (knee abduction moment [KAM], anterior shear force, and internal rotation torque [ITR]) affect tibiofemoral contact forces and ACL force during impact. Four subject‐specific knee models were developed from specimen computed tomography and magnetic resonance imaging. Patellofemoral and tibiofemoral ligament properties were calibrated to match experimentally measured kinematics and ligament strain. Average root mean square errors and correlations between experimental and model‐predicted knee kinematics were below 1.5 mm and 2°, and above 0.75, respectively. Similar errors and correlations were obtained for ACL strain (< 2% and > 0.9). Model‐predicted ACL forces were highly correlated with the anterior component of the tibiofemoral contact force on the lateral plateau occurring during impact (r = 0.99), which was increased by larger KAM and ITR through the posterior tibial slope and a larger contact force on the lateral side. This study provides a better understanding of the mechanism through which secondary external knee loads increase ACL injury risk during landing. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1730–1742, 2019</abstract><cop>United States</cop><pmid>30977558</pmid><doi>10.1002/jor.24313</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0375-8779</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0736-0266 |
ispartof | Journal of orthopaedic research, 2019-08, Vol.37 (8), p.1730-1742 |
issn | 0736-0266 1554-527X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6790148 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content |
subjects | ACL Adult Anterior Cruciate Ligament - physiology Anterior Cruciate Ligament Injuries - etiology Biomechanical Phenomena Female finite element Finite Element Analysis Humans knee Knee Joint - physiology landing Male Middle Aged Tibia - physiology Weight-Bearing |
title | Knee Abduction and Internal Rotation Moments Increase ACL Force During Landing Through the Posterior Slope of the Tibia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knee%20Abduction%20and%20Internal%20Rotation%20Moments%20Increase%20ACL%20Force%20During%20Landing%20Through%20the%20Posterior%20Slope%20of%20the%20Tibia&rft.jtitle=Journal%20of%20orthopaedic%20research&rft.au=Navacchia,%20Alessandro&rft.date=2019-08&rft.volume=37&rft.issue=8&rft.spage=1730&rft.epage=1742&rft.pages=1730-1742&rft.issn=0736-0266&rft.eissn=1554-527X&rft_id=info:doi/10.1002/jor.24313&rft_dat=%3Cproquest_pubme%3E2209597144%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209597144&rft_id=info:pmid/30977558&rfr_iscdi=true |